# Properties

 Label 8.2670938681265625.24t708.b.a Dimension 8 Group $C_2 \wr S_4$ Conductor $5^{6} \cdot 643^{4}$ Root number 1 Frobenius-Schur indicator 1

# Related objects

## Basic invariants

 Dimension: $8$ Group: $C_2 \wr S_4$ Conductor: $2670938681265625= 5^{6} \cdot 643^{4}$ Artin number field: Splitting field of 8.0.2067245.1 defined by $f= x^{8} - x^{7} + x^{6} - x^{4} + x^{2} - x + 1$ over $\Q$ Size of Galois orbit: 1 Smallest containing permutation representation: 24T708 Parity: Even Determinant: 1.1.1t1.a.a Projective image: $C_2^2:S_4:C_2$ Projective field: Galois closure of 8.4.258405625.1

## Galois action

### Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 24.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $x^{2} + 33 x + 2$
Roots:
 $r_{ 1 }$ $=$ $23 a + 13 + \left(9 a + 19\right)\cdot 37 + \left(29 a + 6\right)\cdot 37^{2} + \left(28 a + 21\right)\cdot 37^{3} + \left(33 a + 36\right)\cdot 37^{4} + \left(9 a + 20\right)\cdot 37^{5} + \left(20 a + 4\right)\cdot 37^{6} + \left(8 a + 16\right)\cdot 37^{7} + \left(27 a + 8\right)\cdot 37^{8} + \left(35 a + 2\right)\cdot 37^{9} + \left(33 a + 26\right)\cdot 37^{10} + \left(10 a + 23\right)\cdot 37^{11} + \left(8 a + 10\right)\cdot 37^{12} + \left(17 a + 6\right)\cdot 37^{13} + \left(21 a + 21\right)\cdot 37^{14} + \left(34 a + 14\right)\cdot 37^{15} + \left(4 a + 3\right)\cdot 37^{16} + \left(27 a + 7\right)\cdot 37^{17} + \left(34 a + 14\right)\cdot 37^{18} + \left(24 a + 36\right)\cdot 37^{19} + \left(30 a + 13\right)\cdot 37^{20} + \left(11 a + 6\right)\cdot 37^{21} + \left(26 a + 10\right)\cdot 37^{22} + \left(27 a + 32\right)\cdot 37^{23} +O\left(37^{ 24 }\right)$ $r_{ 2 }$ $=$ $6 a + 31 + \left(28 a + 30\right)\cdot 37 + 19 a\cdot 37^{2} + \left(14 a + 21\right)\cdot 37^{3} + \left(7 a + 23\right)\cdot 37^{4} + \left(22 a + 28\right)\cdot 37^{5} + \left(13 a + 23\right)\cdot 37^{6} + \left(17 a + 9\right)\cdot 37^{7} + \left(a + 8\right)\cdot 37^{8} + \left(11 a + 23\right)\cdot 37^{9} + \left(14 a + 11\right)\cdot 37^{10} + \left(33 a + 23\right)\cdot 37^{11} + \left(27 a + 9\right)\cdot 37^{12} + \left(14 a + 14\right)\cdot 37^{13} + \left(30 a + 10\right)\cdot 37^{14} + \left(13 a + 31\right)\cdot 37^{15} + \left(22 a + 3\right)\cdot 37^{16} + \left(20 a + 29\right)\cdot 37^{17} + \left(4 a + 28\right)\cdot 37^{18} + \left(34 a + 21\right)\cdot 37^{19} + \left(31 a + 8\right)\cdot 37^{20} + \left(15 a + 16\right)\cdot 37^{21} + \left(32 a + 19\right)\cdot 37^{22} + \left(13 a + 10\right)\cdot 37^{23} +O\left(37^{ 24 }\right)$ $r_{ 3 }$ $=$ $13 + 11\cdot 37 + 17\cdot 37^{2} + 9\cdot 37^{3} + 8\cdot 37^{4} + 16\cdot 37^{5} + 4\cdot 37^{6} + 26\cdot 37^{7} + 10\cdot 37^{8} + 29\cdot 37^{9} + 36\cdot 37^{10} + 28\cdot 37^{11} + 16\cdot 37^{12} + 32\cdot 37^{13} + 25\cdot 37^{14} + 24\cdot 37^{15} + 32\cdot 37^{16} + 13\cdot 37^{17} + 36\cdot 37^{18} + 10\cdot 37^{19} + 15\cdot 37^{20} + 8\cdot 37^{21} + 5\cdot 37^{22} +O\left(37^{ 24 }\right)$ $r_{ 4 }$ $=$ $14 a + 31 + \left(27 a + 34\right)\cdot 37 + \left(7 a + 2\right)\cdot 37^{2} + \left(8 a + 33\right)\cdot 37^{3} + \left(3 a + 31\right)\cdot 37^{4} + \left(27 a + 26\right)\cdot 37^{5} + \left(16 a + 1\right)\cdot 37^{6} + \left(28 a + 30\right)\cdot 37^{7} + \left(9 a + 34\right)\cdot 37^{8} + \left(a + 6\right)\cdot 37^{9} + \left(3 a + 15\right)\cdot 37^{10} + \left(26 a + 33\right)\cdot 37^{11} + \left(28 a + 32\right)\cdot 37^{12} + \left(19 a + 29\right)\cdot 37^{13} + \left(15 a + 15\right)\cdot 37^{14} + \left(2 a + 20\right)\cdot 37^{15} + \left(32 a + 25\right)\cdot 37^{16} + \left(9 a + 36\right)\cdot 37^{17} + \left(2 a + 14\right)\cdot 37^{18} + \left(12 a + 27\right)\cdot 37^{19} + 6 a\cdot 37^{20} + \left(25 a + 23\right)\cdot 37^{21} + \left(10 a + 29\right)\cdot 37^{22} + \left(9 a + 5\right)\cdot 37^{23} +O\left(37^{ 24 }\right)$ $r_{ 5 }$ $=$ $28 a + 11 + \left(32 a + 29\right)\cdot 37 + \left(29 a + 1\right)\cdot 37^{2} + \left(7 a + 25\right)\cdot 37^{3} + \left(28 a + 14\right)\cdot 37^{4} + \left(24 a + 19\right)\cdot 37^{5} + \left(30 a + 34\right)\cdot 37^{6} + 8 a\cdot 37^{7} + \left(33 a + 3\right)\cdot 37^{8} + \left(24 a + 34\right)\cdot 37^{9} + \left(31 a + 2\right)\cdot 37^{10} + \left(6 a + 1\right)\cdot 37^{11} + \left(30 a + 25\right)\cdot 37^{12} + \left(20 a + 6\right)\cdot 37^{13} + \left(22 a + 1\right)\cdot 37^{14} + \left(35 a + 23\right)\cdot 37^{15} + \left(21 a + 20\right)\cdot 37^{16} + \left(12 a + 2\right)\cdot 37^{17} + \left(17 a + 3\right)\cdot 37^{18} + \left(6 a + 25\right)\cdot 37^{19} + \left(11 a + 32\right)\cdot 37^{20} + \left(11 a + 15\right)\cdot 37^{21} + \left(29 a + 35\right)\cdot 37^{22} + \left(14 a + 26\right)\cdot 37^{23} +O\left(37^{ 24 }\right)$ $r_{ 6 }$ $=$ $20 + 11\cdot 37 + 15\cdot 37^{2} + 26\cdot 37^{3} + 22\cdot 37^{4} + 20\cdot 37^{5} + 37^{6} + 31\cdot 37^{7} + 32\cdot 37^{8} + 33\cdot 37^{9} + 3\cdot 37^{10} + 9\cdot 37^{11} + 11\cdot 37^{12} + 27\cdot 37^{13} + 33\cdot 37^{14} + 19\cdot 37^{15} + 20\cdot 37^{16} + 12\cdot 37^{17} + 37^{18} + 24\cdot 37^{19} + 14\cdot 37^{20} + 17\cdot 37^{21} + 32\cdot 37^{22} + 18\cdot 37^{23} +O\left(37^{ 24 }\right)$ $r_{ 7 }$ $=$ $31 a + 18 + \left(8 a + 26\right)\cdot 37 + \left(17 a + 14\right)\cdot 37^{2} + \left(22 a + 22\right)\cdot 37^{3} + \left(29 a + 1\right)\cdot 37^{4} + \left(14 a + 36\right)\cdot 37^{5} + \left(23 a + 18\right)\cdot 37^{6} + \left(19 a + 28\right)\cdot 37^{7} + \left(35 a + 33\right)\cdot 37^{8} + \left(25 a + 28\right)\cdot 37^{9} + \left(22 a + 20\right)\cdot 37^{10} + \left(3 a + 31\right)\cdot 37^{11} + \left(9 a + 13\right)\cdot 37^{12} + \left(22 a + 8\right)\cdot 37^{13} + \left(6 a + 6\right)\cdot 37^{14} + \left(23 a + 19\right)\cdot 37^{15} + \left(14 a + 5\right)\cdot 37^{16} + \left(16 a + 15\right)\cdot 37^{17} + \left(32 a + 26\right)\cdot 37^{18} + \left(2 a + 5\right)\cdot 37^{19} + \left(5 a + 28\right)\cdot 37^{20} + \left(21 a + 10\right)\cdot 37^{21} + \left(4 a + 22\right)\cdot 37^{22} + \left(23 a + 33\right)\cdot 37^{23} +O\left(37^{ 24 }\right)$ $r_{ 8 }$ $=$ $9 a + 12 + \left(4 a + 21\right)\cdot 37 + \left(7 a + 14\right)\cdot 37^{2} + \left(29 a + 26\right)\cdot 37^{3} + \left(8 a + 8\right)\cdot 37^{4} + \left(12 a + 16\right)\cdot 37^{5} + \left(6 a + 21\right)\cdot 37^{6} + \left(28 a + 5\right)\cdot 37^{7} + \left(3 a + 16\right)\cdot 37^{8} + \left(12 a + 26\right)\cdot 37^{9} + \left(5 a + 30\right)\cdot 37^{10} + \left(30 a + 33\right)\cdot 37^{11} + \left(6 a + 27\right)\cdot 37^{12} + \left(16 a + 22\right)\cdot 37^{13} + \left(14 a + 33\right)\cdot 37^{14} + \left(a + 31\right)\cdot 37^{15} + \left(15 a + 35\right)\cdot 37^{16} + \left(24 a + 30\right)\cdot 37^{17} + \left(19 a + 22\right)\cdot 37^{18} + \left(30 a + 33\right)\cdot 37^{19} + \left(25 a + 33\right)\cdot 37^{20} + \left(25 a + 12\right)\cdot 37^{21} + \left(7 a + 30\right)\cdot 37^{22} + \left(22 a + 19\right)\cdot 37^{23} +O\left(37^{ 24 }\right)$

### Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

 Cycle notation $(1,4)(5,8)$ $(1,4,3,2)(5,6,7,8)$ $(1,8)$

### Character values on conjugacy classes

 Size Order Action on $r_1, \ldots, r_{ 8 }$ Character value $1$ $1$ $()$ $8$ $1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-8$ $4$ $2$ $(2,7)$ $-4$ $4$ $2$ $(1,8)(2,7)(3,6)$ $4$ $6$ $2$ $(2,7)(4,5)$ $0$ $12$ $2$ $(1,3)(2,4)(5,7)(6,8)$ $0$ $12$ $2$ $(1,4)(5,8)$ $0$ $12$ $2$ $(1,8)(2,3)(4,5)(6,7)$ $0$ $24$ $2$ $(1,4)(2,7)(5,8)$ $0$ $32$ $3$ $(1,3,2)(6,7,8)$ $-1$ $12$ $4$ $(1,3,8,6)(2,5,7,4)$ $0$ $12$ $4$ $(1,4,8,5)$ $0$ $12$ $4$ $(1,8)(2,6,7,3)(4,5)$ $0$ $24$ $4$ $(1,3)(2,5,7,4)(6,8)$ $0$ $24$ $4$ $(1,4,8,5)(2,7)$ $0$ $48$ $4$ $(1,4,3,2)(5,6,7,8)$ $0$ $32$ $6$ $(1,3,2,8,6,7)$ $1$ $32$ $6$ $(1,3,2)(4,5)(6,7,8)$ $-1$ $32$ $6$ $(1,3,2,8,6,7)(4,5)$ $1$ $48$ $8$ $(1,4,3,2,8,5,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.