Properties

Label 8.17e7_67e4.9t15.1c1
Dimension 8
Group $C_3^2:C_8$
Conductor $ 17^{7} \cdot 67^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$8$
Group:$C_3^2:C_8$
Conductor:$8268784250602433= 17^{7} \cdot 67^{4} $
Artin number field: Splitting field of $f= x^{9} - 4 x^{8} - 9 x^{7} + 4 x^{6} + 203 x^{5} + 401 x^{4} - 134 x^{3} - 1999 x^{2} - 3564 x - 2039 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:C_8$
Parity: Even
Determinant: 1.17.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 23.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{4} + 2 x^{2} + 11 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 4 a^{3} + 9 a^{2} + 18 a + 9 + \left(a^{3} + 2 a^{2} + 8 a + 17\right)\cdot 19 + \left(10 a^{2} + 2 a + 6\right)\cdot 19^{2} + \left(11 a^{3} + 15 a^{2} + 12 a + 18\right)\cdot 19^{3} + \left(9 a^{3} + 17 a^{2} + 7 a + 4\right)\cdot 19^{4} + \left(13 a^{3} + 16 a^{2} + a + 3\right)\cdot 19^{5} + \left(12 a^{3} + 16 a + 8\right)\cdot 19^{6} + \left(6 a^{3} + 16 a^{2} + 13\right)\cdot 19^{7} + \left(6 a^{3} + 16 a^{2} + 9 a + 3\right)\cdot 19^{8} + \left(16 a^{3} + 10 a^{2} + 3 a + 4\right)\cdot 19^{9} + \left(2 a^{3} + 10 a^{2} + 10 a + 15\right)\cdot 19^{10} + \left(5 a^{3} + 18 a^{2} + 18 a + 17\right)\cdot 19^{11} + \left(7 a^{3} + 13 a^{2} + 18 a + 2\right)\cdot 19^{12} + \left(2 a^{3} + 16 a^{2} + 16 a + 12\right)\cdot 19^{13} + \left(7 a^{3} + 11 a + 15\right)\cdot 19^{14} + \left(4 a^{3} + 3 a^{2} + 3 a + 15\right)\cdot 19^{15} + \left(6 a^{3} + 9 a + 16\right)\cdot 19^{16} + \left(a^{3} + 17 a^{2} + 6 a + 5\right)\cdot 19^{17} + \left(7 a^{3} + 13 a^{2} + a + 11\right)\cdot 19^{18} + \left(3 a^{2} + 11\right)\cdot 19^{19} + \left(9 a^{3} + 12 a^{2} + 1\right)\cdot 19^{20} + \left(4 a^{3} + 11 a^{2} + 16 a\right)\cdot 19^{21} + \left(9 a^{3} + 9 a^{2} + 11 a + 9\right)\cdot 19^{22} +O\left(19^{ 23 }\right)$
$r_{ 2 }$ $=$ $ 10 a^{3} + 9 a^{2} + 14 a + 15 + \left(5 a^{3} + 7 a^{2} + 16 a + 17\right)\cdot 19 + \left(2 a^{3} + 3 a + 7\right)\cdot 19^{2} + \left(a^{3} + a^{2} + 3 a + 15\right)\cdot 19^{3} + \left(6 a^{3} + 15 a^{2} + 3 a + 11\right)\cdot 19^{4} + \left(5 a^{3} + 9 a^{2} + 4\right)\cdot 19^{5} + \left(8 a^{2} + 8 a + 3\right)\cdot 19^{6} + \left(13 a^{3} + 18 a^{2} + 15 a + 17\right)\cdot 19^{7} + \left(4 a^{3} + 15 a^{2}\right)\cdot 19^{8} + \left(14 a^{3} + 15 a^{2} + 16 a + 17\right)\cdot 19^{9} + \left(14 a^{3} + 5 a^{2} + 5 a + 7\right)\cdot 19^{10} + \left(10 a^{3} + 8 a^{2} + 18 a + 17\right)\cdot 19^{11} + 7\cdot 19^{12} + \left(11 a^{3} + 11 a^{2} + 4 a + 15\right)\cdot 19^{13} + \left(9 a^{3} + 3 a^{2} + 3 a + 13\right)\cdot 19^{14} + \left(10 a^{3} + 15 a^{2} + 4 a + 15\right)\cdot 19^{15} + \left(6 a^{3} + 15 a^{2} + a + 6\right)\cdot 19^{16} + \left(12 a^{3} + 13 a^{2} + 9 a + 14\right)\cdot 19^{17} + \left(7 a^{3} + 14 a^{2} + 3 a + 17\right)\cdot 19^{18} + \left(14 a^{3} + 3 a^{2} + 4 a + 1\right)\cdot 19^{19} + \left(4 a^{3} + 8 a^{2} + 17 a + 10\right)\cdot 19^{20} + \left(a^{3} + 4 a^{2} + 6 a + 1\right)\cdot 19^{21} + \left(17 a^{3} + 11 a^{2} + 11 a + 15\right)\cdot 19^{22} +O\left(19^{ 23 }\right)$
$r_{ 3 }$ $=$ $ 4 a^{3} + 17 a^{2} + a + 2 + \left(7 a^{3} + 9 a^{2} + 10 a + 15\right)\cdot 19 + \left(2 a^{3} + 16 a^{2} + 4 a + 5\right)\cdot 19^{2} + \left(17 a^{3} + 12 a + 14\right)\cdot 19^{3} + \left(9 a^{3} + 9 a^{2} + 13 a + 13\right)\cdot 19^{4} + \left(3 a^{3} + 8 a^{2} + 11 a + 2\right)\cdot 19^{5} + \left(16 a^{2} + 17 a + 15\right)\cdot 19^{6} + \left(11 a^{3} + 11 a^{2} + 18 a + 17\right)\cdot 19^{7} + \left(15 a^{3} + 17 a^{2} + 3 a + 6\right)\cdot 19^{8} + \left(6 a^{3} + 11 a^{2} + 5 a + 18\right)\cdot 19^{9} + \left(10 a^{3} + 11 a + 13\right)\cdot 19^{10} + \left(12 a^{3} + 6 a^{2} + 11 a + 10\right)\cdot 19^{11} + \left(10 a^{3} + 4 a^{2} + 18 a + 9\right)\cdot 19^{12} + \left(5 a^{3} + 14 a^{2} + 14 a + 11\right)\cdot 19^{13} + \left(18 a^{3} + a^{2} + 3 a + 12\right)\cdot 19^{14} + \left(7 a^{3} + 16 a^{2} + 2 a + 14\right)\cdot 19^{15} + \left(16 a^{2} + 18 a + 4\right)\cdot 19^{16} + \left(a^{3} + 14 a^{2} + 14 a + 12\right)\cdot 19^{17} + \left(14 a^{3} + 8 a^{2} + 13 a + 7\right)\cdot 19^{18} + \left(15 a^{3} + 7 a^{2} + 10 a + 2\right)\cdot 19^{19} + \left(17 a^{3} + 5 a^{2} + 10 a + 1\right)\cdot 19^{20} + \left(3 a^{3} + 2 a^{2} + 2 a + 12\right)\cdot 19^{21} + \left(9 a^{3} + 6 a^{2} + 11\right)\cdot 19^{22} +O\left(19^{ 23 }\right)$
$r_{ 4 }$ $=$ $ 4 a^{3} + a^{2} + 6 a + 1 + \left(9 a^{3} + 12 a^{2} + 10 a + 17\right)\cdot 19 + \left(a^{3} + 11 a^{2} + 8 a + 5\right)\cdot 19^{2} + \left(9 a^{3} + 3 a^{2} + 2 a + 14\right)\cdot 19^{3} + \left(10 a^{3} + 12 a^{2} + 14 a + 6\right)\cdot 19^{4} + \left(18 a^{3} + 11 a + 14\right)\cdot 19^{5} + \left(11 a^{3} + 6 a^{2} + 6 a + 16\right)\cdot 19^{6} + \left(a^{3} + 16 a^{2} + 16 a + 14\right)\cdot 19^{7} + \left(13 a^{2} + 10 a + 10\right)\cdot 19^{8} + \left(6 a^{3} + 13 a^{2} + 18 a + 2\right)\cdot 19^{9} + \left(15 a^{3} + 15 a^{2} + 3 a + 9\right)\cdot 19^{10} + \left(12 a^{3} + 4 a^{2} + 8 a + 5\right)\cdot 19^{11} + \left(a^{3} + 17 a^{2} + 14 a + 12\right)\cdot 19^{12} + \left(10 a^{3} + 8 a^{2} + 7 a + 15\right)\cdot 19^{13} + \left(11 a^{3} + 6 a^{2} + 11 a + 14\right)\cdot 19^{14} + \left(8 a^{3} + 13 a + 14\right)\cdot 19^{15} + \left(7 a^{3} + 16 a^{2} + 17 a + 4\right)\cdot 19^{16} + \left(5 a^{3} + 18 a^{2} + 6 a + 3\right)\cdot 19^{17} + \left(13 a^{3} + 10 a^{2} + 3 a + 12\right)\cdot 19^{18} + \left(7 a^{3} + 10 a^{2} + 7\right)\cdot 19^{19} + \left(5 a^{3} + 12 a^{2} + 5 a + 5\right)\cdot 19^{20} + \left(8 a^{3} + 2 a^{2} + 8 a + 8\right)\cdot 19^{21} + \left(a^{3} + 17 a^{2} + 9 a + 4\right)\cdot 19^{22} +O\left(19^{ 23 }\right)$
$r_{ 5 }$ $=$ $ 14 a^{3} + 17 a^{2} + 7 a + 18 + \left(17 a^{3} + 13 a^{2} + 14 a + 10\right)\cdot 19 + \left(5 a^{3} + 6 a^{2} + 14 a + 1\right)\cdot 19^{2} + \left(10 a^{3} + 14 a^{2} + 9 a\right)\cdot 19^{3} + \left(9 a^{3} + 18 a^{2} + 9 a + 11\right)\cdot 19^{4} + \left(15 a^{3} + 16 a^{2} + 17 a + 5\right)\cdot 19^{5} + \left(5 a^{3} + 13 a^{2} + 12 a + 16\right)\cdot 19^{6} + \left(14 a^{3} + 6 a^{2} + 12 a + 1\right)\cdot 19^{7} + \left(8 a^{3} + 16 a + 14\right)\cdot 19^{8} + \left(9 a^{3} + 12 a^{2} + 4 a + 11\right)\cdot 19^{9} + \left(14 a^{3} + 9 a^{2} + 8 a + 9\right)\cdot 19^{10} + \left(6 a^{3} + 15 a + 14\right)\cdot 19^{11} + \left(a^{3} + 13 a + 18\right)\cdot 19^{12} + \left(12 a^{3} + 11 a^{2} + 5 a + 4\right)\cdot 19^{13} + \left(4 a^{3} + 7 a^{2} + 18 a + 10\right)\cdot 19^{14} + \left(9 a^{3} + 9 a^{2} + 13 a + 18\right)\cdot 19^{15} + \left(5 a^{3} + 6 a^{2} + 15 a + 2\right)\cdot 19^{16} + \left(6 a^{3} + 18 a^{2} + 7 a + 2\right)\cdot 19^{17} + \left(a^{3} + a^{2} + 9 a + 5\right)\cdot 19^{18} + \left(18 a^{3} + 5 a^{2} + 2 a\right)\cdot 19^{19} + \left(18 a^{3} + 14 a^{2} + 16 a + 5\right)\cdot 19^{20} + \left(2 a^{3} + 5 a^{2} + 2 a + 17\right)\cdot 19^{21} + \left(10 a^{3} + 15 a^{2} + 11 a + 4\right)\cdot 19^{22} +O\left(19^{ 23 }\right)$
$r_{ 6 }$ $=$ $ 16 a^{3} + 14 a^{2} + 12 a + 18 + \left(16 a^{3} + 12 a^{2} + 2 a + 18\right)\cdot 19 + \left(4 a^{3} + 6 a + 3\right)\cdot 19^{2} + \left(17 a^{3} + 14 a^{2} + 4 a + 16\right)\cdot 19^{3} + \left(9 a^{3} + 5 a^{2} + 11 a + 9\right)\cdot 19^{4} + \left(8 a^{3} + 5 a^{2} + 17 a + 7\right)\cdot 19^{5} + \left(16 a^{3} + 3 a^{2} + 15 a + 3\right)\cdot 19^{6} + \left(6 a^{3} + 2 a^{2} + 1\right)\cdot 19^{7} + \left(10 a^{3} + 13 a^{2} + 8 a + 14\right)\cdot 19^{8} + \left(a^{3} + a^{2} + 4 a + 10\right)\cdot 19^{9} + \left(12 a^{3} + 7 a^{2} + 3 a + 16\right)\cdot 19^{10} + \left(14 a^{3} + 16 a^{2} + 13 a + 17\right)\cdot 19^{11} + \left(13 a^{3} + 15 a^{2} + 11 a + 10\right)\cdot 19^{12} + \left(12 a^{3} + 8 a^{2} + 15 a + 13\right)\cdot 19^{13} + \left(a^{3} + 16 a^{2} + 12 a + 14\right)\cdot 19^{14} + \left(6 a^{3} + 14 a + 8\right)\cdot 19^{15} + \left(a^{3} + 16 a^{2} + 15 a + 6\right)\cdot 19^{16} + \left(8 a^{2} + 14 a + 6\right)\cdot 19^{17} + \left(16 a^{3} + 13 a^{2} + 10 a + 13\right)\cdot 19^{18} + \left(17 a^{3} + 5 a^{2} + 15 a + 5\right)\cdot 19^{19} + \left(9 a^{3} + 14 a^{2} + 5 a + 11\right)\cdot 19^{20} + \left(9 a^{3} + 8 a^{2} + 7 a + 5\right)\cdot 19^{21} + \left(6 a^{3} + 4 a^{2} + 14 a\right)\cdot 19^{22} +O\left(19^{ 23 }\right)$
$r_{ 7 }$ $=$ $ 14 a^{3} + 14 a^{2} + 2 a + 11 + \left(10 a^{3} + 10 a^{2} + 16 a + 4\right)\cdot 19 + \left(12 a^{3} + 15 a^{2} + a + 6\right)\cdot 19^{2} + \left(4 a^{2} + 17\right)\cdot 19^{3} + \left(8 a^{3} + 2 a^{2} + 5 a + 9\right)\cdot 19^{4} + \left(16 a^{3} + 15 a^{2} + 7 a + 6\right)\cdot 19^{5} + \left(15 a^{3} + 8 a^{2} + 18 a + 18\right)\cdot 19^{6} + \left(3 a^{3} + 3 a^{2} + 5\right)\cdot 19^{7} + \left(2 a^{3} + 13 a^{2} + 10 a + 13\right)\cdot 19^{8} + \left(14 a^{3} + 11 a^{2} + 11 a + 5\right)\cdot 19^{9} + \left(7 a^{3} + 4 a^{2} + a + 16\right)\cdot 19^{10} + \left(5 a^{3} + 17 a^{2} + 17 a + 13\right)\cdot 19^{11} + \left(15 a^{3} + 9 a^{2} + 11 a + 12\right)\cdot 19^{12} + \left(12 a^{3} + 3 a^{2} + 16 a + 13\right)\cdot 19^{13} + \left(17 a^{3} + 14 a^{2} + a + 6\right)\cdot 19^{14} + \left(18 a^{3} + 14 a^{2} + 6 a\right)\cdot 19^{15} + \left(3 a^{3} + 5 a^{2} + 14 a + 4\right)\cdot 19^{16} + \left(12 a^{3} + 12 a^{2} + 9 a + 10\right)\cdot 19^{17} + \left(a^{3} + 18 a^{2} + 3 a + 4\right)\cdot 19^{18} + \left(12 a^{3} + 17 a^{2} + 3 a + 13\right)\cdot 19^{19} + \left(13 a^{3} + 17 a^{2} + 8 a + 2\right)\cdot 19^{20} + \left(15 a^{3} + 14 a^{2} + 6 a + 1\right)\cdot 19^{21} + \left(a^{3} + 6 a^{2} + 2 a + 2\right)\cdot 19^{22} +O\left(19^{ 23 }\right)$
$r_{ 8 }$ $=$ $ 5 + 7\cdot 19 + 3\cdot 19^{2} + 8\cdot 19^{3} + 10\cdot 19^{4} + 12\cdot 19^{5} + 2\cdot 19^{6} + 2\cdot 19^{8} + 5\cdot 19^{9} + 3\cdot 19^{10} + 17\cdot 19^{11} + 6\cdot 19^{12} + 6\cdot 19^{13} + 14\cdot 19^{14} + 11\cdot 19^{16} + 18\cdot 19^{17} + 8\cdot 19^{18} + 7\cdot 19^{19} + 14\cdot 19^{20} + 18\cdot 19^{21} + 18\cdot 19^{22} +O\left(19^{ 23 }\right)$
$r_{ 9 }$ $=$ $ 10 a^{3} + 14 a^{2} + 16 a + 1 + \left(7 a^{3} + 6 a^{2} + 15 a + 5\right)\cdot 19 + \left(8 a^{3} + 14 a^{2} + 14 a + 15\right)\cdot 19^{2} + \left(9 a^{3} + 2 a^{2} + 12 a + 9\right)\cdot 19^{3} + \left(12 a^{3} + 14 a^{2} + 11 a + 16\right)\cdot 19^{4} + \left(13 a^{3} + 2 a^{2} + 8 a + 18\right)\cdot 19^{5} + \left(12 a^{3} + 18 a^{2} + 18 a + 10\right)\cdot 19^{6} + \left(18 a^{3} + 9 a + 3\right)\cdot 19^{7} + \left(8 a^{3} + 4 a^{2} + 16 a + 10\right)\cdot 19^{8} + \left(7 a^{3} + 17 a^{2} + 11 a\right)\cdot 19^{9} + \left(17 a^{3} + 2 a^{2} + 12 a + 3\right)\cdot 19^{10} + \left(7 a^{3} + 4 a^{2} + 11 a + 18\right)\cdot 19^{11} + \left(6 a^{3} + 14 a^{2} + 4 a + 12\right)\cdot 19^{12} + \left(9 a^{3} + a^{2} + 13 a + 1\right)\cdot 19^{13} + \left(5 a^{3} + 6 a^{2} + 12 a + 11\right)\cdot 19^{14} + \left(10 a^{3} + 16 a^{2} + 17 a + 5\right)\cdot 19^{15} + \left(6 a^{3} + 17 a^{2} + 2 a + 18\right)\cdot 19^{16} + \left(18 a^{3} + 9 a^{2} + 6 a + 2\right)\cdot 19^{17} + \left(14 a^{3} + 12 a^{2} + 11 a + 14\right)\cdot 19^{18} + \left(8 a^{3} + 2 a^{2} + a + 6\right)\cdot 19^{19} + \left(15 a^{3} + 10 a^{2} + 13 a + 5\right)\cdot 19^{20} + \left(10 a^{3} + 6 a^{2} + 6 a + 11\right)\cdot 19^{21} + \left(a^{3} + 5 a^{2} + 15 a + 9\right)\cdot 19^{22} +O\left(19^{ 23 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,3,2,7,4,6,8,5)$
$(1,4,9)(2,7,6)(3,5,8)$
$(1,8,4,2)(3,5,6,7)$
$(1,4)(2,8)(3,6)(5,7)$
$(1,3,7)(2,9,8)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$8$
$9$$2$$(1,2)(3,8)(4,6)(7,9)$$0$
$8$$3$$(1,4,9)(2,7,6)(3,5,8)$$-1$
$9$$4$$(1,7,2,9)(3,6,8,4)$$0$
$9$$4$$(1,9,2,7)(3,4,8,6)$$0$
$9$$8$$(1,6,7,8,2,4,9,3)$$0$
$9$$8$$(1,8,9,6,2,3,7,4)$$0$
$9$$8$$(1,4,7,3,2,6,9,8)$$0$
$9$$8$$(1,3,9,4,2,8,7,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.