Properties

Label 8.13e6_331e4.24t708.1c1
Dimension 8
Group $C_2 \wr S_4$
Conductor $ 13^{6} \cdot 331^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$8$
Group:$C_2 \wr S_4$
Conductor:$57939145914237289= 13^{6} \cdot 331^{4} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 2 x^{6} - x^{5} + x^{4} - x^{3} + 2 x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 24T708
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 22.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{2} + 58 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 40 + 15\cdot 59 + 35\cdot 59^{2} + 53\cdot 59^{3} + 15\cdot 59^{4} + 54\cdot 59^{5} + 34\cdot 59^{6} + 54\cdot 59^{7} + 5\cdot 59^{8} + 44\cdot 59^{9} + 13\cdot 59^{10} + 52\cdot 59^{11} + 17\cdot 59^{13} + 12\cdot 59^{14} + 34\cdot 59^{15} + 35\cdot 59^{16} + 3\cdot 59^{17} + 8\cdot 59^{18} + 3\cdot 59^{19} + 15\cdot 59^{20} + 36\cdot 59^{21} +O\left(59^{ 22 }\right)$
$r_{ 2 }$ $=$ $ 7 a + 11 + \left(14 a + 4\right)\cdot 59 + \left(42 a + 25\right)\cdot 59^{2} + \left(40 a + 58\right)\cdot 59^{3} + \left(47 a + 8\right)\cdot 59^{4} + \left(19 a + 50\right)\cdot 59^{5} + \left(9 a + 54\right)\cdot 59^{6} + \left(4 a + 12\right)\cdot 59^{7} + \left(20 a + 28\right)\cdot 59^{8} + \left(40 a + 29\right)\cdot 59^{9} + \left(35 a + 48\right)\cdot 59^{10} + \left(50 a + 28\right)\cdot 59^{11} + \left(28 a + 18\right)\cdot 59^{12} + \left(21 a + 12\right)\cdot 59^{13} + \left(36 a + 45\right)\cdot 59^{14} + \left(12 a + 56\right)\cdot 59^{15} + \left(8 a + 8\right)\cdot 59^{16} + \left(36 a + 29\right)\cdot 59^{17} + 5\cdot 59^{18} + \left(58 a + 48\right)\cdot 59^{19} + \left(53 a + 44\right)\cdot 59^{20} + \left(22 a + 6\right)\cdot 59^{21} +O\left(59^{ 22 }\right)$
$r_{ 3 }$ $=$ $ 52 a + 50 + \left(55 a + 29\right)\cdot 59 + \left(47 a + 48\right)\cdot 59^{2} + \left(32 a + 42\right)\cdot 59^{3} + \left(33 a + 25\right)\cdot 59^{4} + \left(28 a + 3\right)\cdot 59^{5} + \left(32 a + 16\right)\cdot 59^{6} + \left(44 a + 21\right)\cdot 59^{7} + \left(45 a + 36\right)\cdot 59^{8} + \left(32 a + 25\right)\cdot 59^{9} + 32\cdot 59^{10} + \left(4 a + 55\right)\cdot 59^{11} + \left(52 a + 54\right)\cdot 59^{12} + \left(51 a + 42\right)\cdot 59^{13} + \left(10 a + 45\right)\cdot 59^{14} + \left(58 a + 8\right)\cdot 59^{15} + \left(23 a + 11\right)\cdot 59^{16} + \left(47 a + 11\right)\cdot 59^{17} + \left(5 a + 34\right)\cdot 59^{18} + \left(18 a + 46\right)\cdot 59^{19} + \left(20 a + 36\right)\cdot 59^{20} + \left(4 a + 47\right)\cdot 59^{21} +O\left(59^{ 22 }\right)$
$r_{ 4 }$ $=$ $ 48 a + 28 + \left(17 a + 7\right)\cdot 59 + \left(41 a + 47\right)\cdot 59^{2} + \left(20 a + 36\right)\cdot 59^{3} + \left(51 a + 32\right)\cdot 59^{4} + \left(8 a + 19\right)\cdot 59^{5} + \left(35 a + 4\right)\cdot 59^{6} + \left(25 a + 23\right)\cdot 59^{7} + \left(12 a + 29\right)\cdot 59^{8} + \left(28 a + 44\right)\cdot 59^{9} + \left(56 a + 12\right)\cdot 59^{10} + \left(3 a + 1\right)\cdot 59^{11} + \left(55 a + 24\right)\cdot 59^{12} + \left(22 a + 4\right)\cdot 59^{13} + \left(28 a + 36\right)\cdot 59^{14} + \left(50 a + 57\right)\cdot 59^{15} + \left(22 a + 17\right)\cdot 59^{16} + \left(21 a + 1\right)\cdot 59^{17} + \left(9 a + 58\right)\cdot 59^{18} + \left(3 a + 21\right)\cdot 59^{19} + \left(49 a + 53\right)\cdot 59^{20} + \left(39 a + 41\right)\cdot 59^{21} +O\left(59^{ 22 }\right)$
$r_{ 5 }$ $=$ $ 7 a + 43 + \left(3 a + 33\right)\cdot 59 + \left(11 a + 40\right)\cdot 59^{2} + \left(26 a + 27\right)\cdot 59^{3} + \left(25 a + 26\right)\cdot 59^{4} + \left(30 a + 57\right)\cdot 59^{5} + \left(26 a + 19\right)\cdot 59^{6} + \left(14 a + 33\right)\cdot 59^{7} + \left(13 a + 37\right)\cdot 59^{8} + \left(26 a + 12\right)\cdot 59^{9} + 58 a\cdot 59^{10} + 54 a\cdot 59^{11} + \left(6 a + 44\right)\cdot 59^{12} + \left(7 a + 42\right)\cdot 59^{13} + \left(48 a + 4\right)\cdot 59^{14} + 56\cdot 59^{15} + \left(35 a + 35\right)\cdot 59^{16} + \left(11 a + 34\right)\cdot 59^{17} + \left(53 a + 51\right)\cdot 59^{18} + \left(40 a + 58\right)\cdot 59^{19} + \left(38 a + 38\right)\cdot 59^{20} + \left(54 a + 31\right)\cdot 59^{21} +O\left(59^{ 22 }\right)$
$r_{ 6 }$ $=$ $ 11 a + 17 + \left(41 a + 36\right)\cdot 59 + \left(17 a + 11\right)\cdot 59^{2} + \left(38 a + 16\right)\cdot 59^{3} + \left(7 a + 4\right)\cdot 59^{4} + \left(50 a + 36\right)\cdot 59^{5} + \left(23 a + 30\right)\cdot 59^{6} + \left(33 a + 13\right)\cdot 59^{7} + \left(46 a + 16\right)\cdot 59^{8} + \left(30 a + 1\right)\cdot 59^{9} + \left(2 a + 41\right)\cdot 59^{10} + \left(55 a + 7\right)\cdot 59^{11} + \left(3 a + 16\right)\cdot 59^{12} + \left(36 a + 31\right)\cdot 59^{13} + \left(30 a + 41\right)\cdot 59^{14} + \left(8 a + 20\right)\cdot 59^{15} + \left(36 a + 49\right)\cdot 59^{16} + \left(37 a + 58\right)\cdot 59^{17} + \left(49 a + 45\right)\cdot 59^{18} + \left(55 a + 15\right)\cdot 59^{19} + \left(9 a + 40\right)\cdot 59^{20} + \left(19 a + 32\right)\cdot 59^{21} +O\left(59^{ 22 }\right)$
$r_{ 7 }$ $=$ $ 52 a + 18 + \left(44 a + 11\right)\cdot 59 + \left(16 a + 53\right)\cdot 59^{2} + \left(18 a + 56\right)\cdot 59^{3} + \left(11 a + 15\right)\cdot 59^{4} + \left(39 a + 22\right)\cdot 59^{5} + \left(49 a + 44\right)\cdot 59^{6} + \left(54 a + 7\right)\cdot 59^{7} + \left(38 a + 44\right)\cdot 59^{8} + \left(18 a + 49\right)\cdot 59^{9} + \left(23 a + 43\right)\cdot 59^{10} + \left(8 a + 43\right)\cdot 59^{11} + \left(30 a + 55\right)\cdot 59^{12} + \left(37 a + 4\right)\cdot 59^{13} + \left(22 a + 1\right)\cdot 59^{14} + \left(46 a + 33\right)\cdot 59^{15} + \left(50 a + 4\right)\cdot 59^{16} + \left(22 a + 57\right)\cdot 59^{17} + \left(58 a + 28\right)\cdot 59^{18} + 46\cdot 59^{19} + \left(5 a + 40\right)\cdot 59^{20} + \left(36 a + 34\right)\cdot 59^{21} +O\left(59^{ 22 }\right)$
$r_{ 8 }$ $=$ $ 31 + 38\cdot 59 + 33\cdot 59^{2} + 2\cdot 59^{3} + 47\cdot 59^{4} + 51\cdot 59^{5} + 30\cdot 59^{6} + 10\cdot 59^{7} + 38\cdot 59^{8} + 28\cdot 59^{9} + 43\cdot 59^{10} + 46\cdot 59^{11} + 21\cdot 59^{12} + 21\cdot 59^{13} + 49\cdot 59^{14} + 27\cdot 59^{15} + 13\cdot 59^{16} + 40\cdot 59^{17} + 3\cdot 59^{18} + 54\cdot 59^{19} + 24\cdot 59^{20} + 4\cdot 59^{21} +O\left(59^{ 22 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,4,2)(5,7,8,6)$
$(4,5)$
$(2,4)(5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$8$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-8$
$4$$2$$(1,8)$$-4$
$4$$2$$(1,8)(2,7)(3,6)$$4$
$6$$2$$(1,8)(4,5)$$0$
$12$$2$$(1,4)(2,3)(5,8)(6,7)$$0$
$12$$2$$(2,4)(5,7)$$0$
$12$$2$$(1,8)(2,7)(3,4)(5,6)$$0$
$24$$2$$(1,8)(2,4)(5,7)$$0$
$32$$3$$(1,3,4)(5,8,6)$$-1$
$12$$4$$(1,5,8,4)(2,3,7,6)$$0$
$12$$4$$(2,5,7,4)$$0$
$12$$4$$(1,6,8,3)(2,7)(4,5)$$0$
$24$$4$$(1,5,8,4)(2,3)(6,7)$$0$
$24$$4$$(1,8)(2,5,7,4)$$0$
$48$$4$$(1,3,4,2)(5,7,8,6)$$0$
$32$$6$$(1,7,6,8,2,3)$$1$
$32$$6$$(1,3,4)(2,7)(5,8,6)$$-1$
$32$$6$$(1,6,5,8,3,4)(2,7)$$1$
$48$$8$$(1,7,5,6,8,2,4,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.