Properties

Label 8.13e6_19e6.36t555.1
Dimension 8
Group $A_6$
Conductor $ 13^{6} \cdot 19^{6}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$8$
Group:$A_6$
Conductor:$227081481823729= 13^{6} \cdot 19^{6} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 10 x^{4} - 34 x^{3} - 26 x^{2} + 182 x - 143 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_6$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 73 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 73 }$: $ x^{2} + 70 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 45 a + 16 + \left(28 a + 36\right)\cdot 73 + \left(33 a + 12\right)\cdot 73^{2} + \left(56 a + 10\right)\cdot 73^{3} + \left(67 a + 12\right)\cdot 73^{4} + \left(44 a + 22\right)\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 28 a + 5 + \left(44 a + 4\right)\cdot 73 + \left(39 a + 11\right)\cdot 73^{2} + 16 a\cdot 73^{3} + \left(5 a + 13\right)\cdot 73^{4} + \left(28 a + 16\right)\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 69 a + 15 + 64 a\cdot 73 + \left(42 a + 55\right)\cdot 73^{2} + \left(47 a + 10\right)\cdot 73^{3} + \left(49 a + 33\right)\cdot 73^{4} + \left(a + 55\right)\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 4 a + 3 + \left(8 a + 53\right)\cdot 73 + \left(30 a + 45\right)\cdot 73^{2} + \left(25 a + 37\right)\cdot 73^{3} + \left(23 a + 61\right)\cdot 73^{4} + \left(71 a + 10\right)\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 14 + 34\cdot 73 + 56\cdot 73^{2} + 20\cdot 73^{3} + 57\cdot 73^{4} + 67\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 22 + 18\cdot 73 + 38\cdot 73^{2} + 66\cdot 73^{3} + 41\cdot 73^{4} + 46\cdot 73^{5} +O\left(73^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,3)$
$(1,2)(3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $8$ $8$
$45$ $2$ $(1,2)(3,4)$ $0$ $0$
$40$ $3$ $(1,2,3)(4,5,6)$ $-1$ $-1$
$40$ $3$ $(1,2,3)$ $-1$ $-1$
$90$ $4$ $(1,2,3,4)(5,6)$ $0$ $0$
$72$ $5$ $(1,2,3,4,5)$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$
$72$ $5$ $(1,3,4,5,2)$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
The blue line marks the conjugacy class containing complex conjugation.