Properties

Label 8.227...729.36t555.b
Dimension $8$
Group $A_6$
Conductor $2.271\times 10^{14}$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$8$
Group:$A_6$
Conductor:\(227081481823729\)\(\medspace = 13^{6} \cdot 19^{6} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 6.2.3722098081.1
Galois orbit size: $2$
Smallest permutation container: $A_6$
Parity: even
Projective image: $A_6$
Projective field: Galois closure of 6.2.3722098081.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 73 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 73 }$: \( x^{2} + 70x + 5 \) Copy content Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 45 a + 16 + \left(28 a + 36\right)\cdot 73 + \left(33 a + 12\right)\cdot 73^{2} + \left(56 a + 10\right)\cdot 73^{3} + \left(67 a + 12\right)\cdot 73^{4} + \left(44 a + 22\right)\cdot 73^{5} +O(73^{6})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 28 a + 5 + \left(44 a + 4\right)\cdot 73 + \left(39 a + 11\right)\cdot 73^{2} + 16 a\cdot 73^{3} + \left(5 a + 13\right)\cdot 73^{4} + \left(28 a + 16\right)\cdot 73^{5} +O(73^{6})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 69 a + 15 + 64 a\cdot 73 + \left(42 a + 55\right)\cdot 73^{2} + \left(47 a + 10\right)\cdot 73^{3} + \left(49 a + 33\right)\cdot 73^{4} + \left(a + 55\right)\cdot 73^{5} +O(73^{6})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 4 a + 3 + \left(8 a + 53\right)\cdot 73 + \left(30 a + 45\right)\cdot 73^{2} + \left(25 a + 37\right)\cdot 73^{3} + \left(23 a + 61\right)\cdot 73^{4} + \left(71 a + 10\right)\cdot 73^{5} +O(73^{6})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 14 + 34\cdot 73 + 56\cdot 73^{2} + 20\cdot 73^{3} + 57\cdot 73^{4} + 67\cdot 73^{5} +O(73^{6})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 22 + 18\cdot 73 + 38\cdot 73^{2} + 66\cdot 73^{3} + 41\cdot 73^{4} + 46\cdot 73^{5} +O(73^{6})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,3)$
$(1,2)(3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $8$ $8$
$45$ $2$ $(1,2)(3,4)$ $0$ $0$
$40$ $3$ $(1,2,3)(4,5,6)$ $-1$ $-1$
$40$ $3$ $(1,2,3)$ $-1$ $-1$
$90$ $4$ $(1,2,3,4)(5,6)$ $0$ $0$
$72$ $5$ $(1,2,3,4,5)$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$
$72$ $5$ $(1,3,4,5,2)$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
The blue line marks the conjugacy class containing complex conjugation.