Properties

Label 8.11e6_31e4.21t14.2c1
Dimension 8
Group $\GL(3,2)$
Conductor $ 11^{6} \cdot 31^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$8$
Group:$\GL(3,2)$
Conductor:$1636073786281= 11^{6} \cdot 31^{4} $
Artin number field: Splitting field of $f= x^{7} - 3 x^{6} + 7 x^{5} - 27 x^{4} + 54 x^{3} - 34 x^{2} - 14 x + 15 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PSL(2,7)$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{3} + 2 x + 27 $
Roots:
$r_{ 1 }$ $=$ $ 26 a^{2} + 6 a + 5 + \left(26 a^{2} + 5 a + 10\right)\cdot 29 + \left(25 a^{2} + 12 a + 23\right)\cdot 29^{2} + \left(22 a^{2} + 10 a + 19\right)\cdot 29^{3} + \left(24 a^{2} + 5 a + 12\right)\cdot 29^{4} + \left(28 a^{2} + 20 a + 2\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 27 a^{2} + 14 a + 16 + \left(24 a^{2} + 20 a + 7\right)\cdot 29 + \left(3 a^{2} + 13 a + 13\right)\cdot 29^{2} + \left(12 a^{2} + 12 a + 5\right)\cdot 29^{3} + \left(23 a^{2} + 18 a + 1\right)\cdot 29^{4} + \left(6 a^{2} + 27 a + 2\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 21 + 25\cdot 29 + 22\cdot 29^{2} + 5\cdot 29^{3} + 3\cdot 29^{4} + 13\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 5 a + 14 + \left(22 a^{2} + 21 a + 17\right)\cdot 29 + \left(5 a^{2} + 10 a + 1\right)\cdot 29^{2} + \left(15 a^{2} + 23 a\right)\cdot 29^{3} + \left(28 a + 20\right)\cdot 29^{4} + \left(26 a^{2} + 14 a + 27\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 8 a^{2} + 24 a + 15 + \left(8 a^{2} + 3 a + 18\right)\cdot 29 + \left(10 a^{2} + 23 a + 7\right)\cdot 29^{2} + \left(17 a^{2} + 5 a + 22\right)\cdot 29^{3} + \left(13 a^{2} + 28 a + 27\right)\cdot 29^{4} + \left(14 a^{2} + a + 21\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 21 a^{2} + 13 + \left(27 a^{2} + 4 a + 15\right)\cdot 29 + \left(12 a^{2} + 24 a + 1\right)\cdot 29^{2} + \left(25 a^{2} + 28 a + 4\right)\cdot 29^{3} + \left(14 a^{2} + 10\right)\cdot 29^{4} + \left(17 a^{2} + 12 a + 16\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 5 a^{2} + 9 a + 6 + \left(6 a^{2} + 3 a + 21\right)\cdot 29 + \left(28 a^{2} + 3 a + 16\right)\cdot 29^{2} + \left(22 a^{2} + 6 a\right)\cdot 29^{3} + \left(9 a^{2} + 5 a + 12\right)\cdot 29^{4} + \left(22 a^{2} + 10 a + 3\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,3,5,4)(6,7)$
$(1,7)(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$8$
$21$$2$$(1,5)(3,4)$$0$
$56$$3$$(1,2,5)(3,4,6)$$-1$
$42$$4$$(1,3,5,4)(6,7)$$0$
$24$$7$$(1,2,3,5,4,7,6)$$1$
$24$$7$$(1,5,6,3,7,2,4)$$1$
The blue line marks the conjugacy class containing complex conjugation.