Properties

Label 70.137...224.120.a
Dimension $70$
Group $A_8$
Conductor $1.377\times 10^{412}$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$70$
Group:$A_8$
Conductor:\(137\!\cdots\!224\)\(\medspace = 2^{190} \cdot 23^{60} \cdot 35809^{60}\)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 8.0.5113757317969899544771546325450569302016.1
Galois orbit size: $1$
Smallest permutation container: 120
Parity: even
Projective image: $A_8$
Projective field: Galois closure of 8.0.5113757317969899544771546325450569302016.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 797 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 797 }$: \( x^{2} + 793x + 2 \) Copy content Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 309 a + 652 + \left(256 a + 581\right)\cdot 797 + \left(443 a + 115\right)\cdot 797^{2} + \left(138 a + 488\right)\cdot 797^{3} + \left(287 a + 153\right)\cdot 797^{4} + \left(540 a + 411\right)\cdot 797^{5} + \left(125 a + 665\right)\cdot 797^{6} + \left(454 a + 27\right)\cdot 797^{7} + \left(565 a + 489\right)\cdot 797^{8} + \left(464 a + 695\right)\cdot 797^{9} +O(797^{10})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 731 a + 319 + \left(445 a + 368\right)\cdot 797 + \left(75 a + 425\right)\cdot 797^{2} + \left(622 a + 516\right)\cdot 797^{3} + \left(673 a + 330\right)\cdot 797^{4} + \left(218 a + 477\right)\cdot 797^{5} + \left(183 a + 390\right)\cdot 797^{6} + \left(133 a + 116\right)\cdot 797^{7} + \left(131 a + 631\right)\cdot 797^{8} + \left(171 a + 767\right)\cdot 797^{9} +O(797^{10})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 488 a + 294 + \left(540 a + 501\right)\cdot 797 + \left(353 a + 38\right)\cdot 797^{2} + \left(658 a + 599\right)\cdot 797^{3} + \left(509 a + 366\right)\cdot 797^{4} + \left(256 a + 691\right)\cdot 797^{5} + \left(671 a + 627\right)\cdot 797^{6} + \left(342 a + 124\right)\cdot 797^{7} + \left(231 a + 703\right)\cdot 797^{8} + \left(332 a + 394\right)\cdot 797^{9} +O(797^{10})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 66 a + 55 + \left(351 a + 624\right)\cdot 797 + \left(721 a + 281\right)\cdot 797^{2} + \left(174 a + 538\right)\cdot 797^{3} + \left(123 a + 12\right)\cdot 797^{4} + \left(578 a + 679\right)\cdot 797^{5} + \left(613 a + 107\right)\cdot 797^{6} + \left(663 a + 466\right)\cdot 797^{7} + \left(665 a + 225\right)\cdot 797^{8} + \left(625 a + 524\right)\cdot 797^{9} +O(797^{10})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 739 + 21\cdot 797 + 675\cdot 797^{2} + 210\cdot 797^{3} + 269\cdot 797^{4} + 123\cdot 797^{5} + 105\cdot 797^{6} + 226\cdot 797^{7} + 440\cdot 797^{8} + 363\cdot 797^{9} +O(797^{10})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 265 + 682\cdot 797 + 623\cdot 797^{2} + 759\cdot 797^{3} + 247\cdot 797^{4} + 498\cdot 797^{5} + 282\cdot 797^{6} + 193\cdot 797^{7} + 66\cdot 797^{8} + 389\cdot 797^{9} +O(797^{10})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 675 + 656\cdot 797 + 483\cdot 797^{2} + 333\cdot 797^{3} + 673\cdot 797^{4} + 516\cdot 797^{5} + 79\cdot 797^{6} + 159\cdot 797^{7} + 492\cdot 797^{8} + 281\cdot 797^{9} +O(797^{10})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 189 + 548\cdot 797 + 543\cdot 797^{2} + 538\cdot 797^{3} + 336\cdot 797^{4} + 587\cdot 797^{5} + 131\cdot 797^{6} + 280\cdot 797^{7} + 140\cdot 797^{8} + 568\cdot 797^{9} +O(797^{10})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,4,5,6,7,8)$
$(1,2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $70$
$105$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $-2$
$210$ $2$ $(1,2)(3,4)$ $2$
$112$ $3$ $(1,2,3)$ $-5$
$1120$ $3$ $(1,2,3)(4,5,6)$ $1$
$1260$ $4$ $(1,2,3,4)(5,6,7,8)$ $-2$
$2520$ $4$ $(1,2,3,4)(5,6)$ $0$
$1344$ $5$ $(1,2,3,4,5)$ $0$
$1680$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$3360$ $6$ $(1,2,3,4,5,6)(7,8)$ $1$
$2880$ $7$ $(1,2,3,4,5,6,7)$ $0$
$2880$ $7$ $(1,3,4,5,6,7,2)$ $0$
$1344$ $15$ $(1,2,3,4,5)(6,7,8)$ $0$
$1344$ $15$ $(1,3,4,5,2)(6,7,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.