Properties

Label 7.251...521.8t37.a.a
Dimension $7$
Group $\GL(3,2)$
Conductor $2.517\times 10^{14}$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $7$
Group: $\GL(3,2)$
Conductor: \(251675665475521\)\(\medspace = 7^{4} \cdot 569^{4} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 7.3.15864289.1
Galois orbit size: $1$
Smallest permutation container: $\PSL(2,7)$
Parity: even
Determinant: 1.1.1t1.a.a
Projective image: $\GL(3,2)$
Projective stem field: Galois closure of 7.3.15864289.1

Defining polynomial

$f(x)$$=$ \( x^{7} - x^{6} + x^{5} - 4x^{4} + 4x^{3} - 5x^{2} + 2x + 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 6.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: \( x^{3} + 2x + 11 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 4 a^{2} + 11 a + 3 + \left(4 a + 12\right)\cdot 13 + \left(8 a^{2} + 6 a + 6\right)\cdot 13^{2} + \left(3 a^{2} + 8 a + 5\right)\cdot 13^{3} + 10 a^{2} 13^{4} + \left(2 a^{2} + 11 a + 3\right)\cdot 13^{5} +O(13^{6})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 8 + 9\cdot 13 + 12\cdot 13^{2} + 8\cdot 13^{3} + 11\cdot 13^{4} +O(13^{6})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 10 a^{2} + 8 a + 11 + \left(4 a^{2} + 8 a\right)\cdot 13 + \left(6 a^{2} + a + 9\right)\cdot 13^{2} + \left(3 a^{2} + 10 a + 9\right)\cdot 13^{3} + \left(7 a^{2} + a\right)\cdot 13^{4} + \left(10 a^{2} + 3 a + 9\right)\cdot 13^{5} +O(13^{6})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 9 a + \left(2 a^{2} + 6 a + 5\right)\cdot 13 + \left(3 a^{2} + a + 12\right)\cdot 13^{2} + \left(3 a^{2} + 8 a + 4\right)\cdot 13^{3} + \left(3 a^{2} + 9\right)\cdot 13^{4} + \left(2 a^{2} + 4 a + 7\right)\cdot 13^{5} +O(13^{6})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 6 a^{2} + 11 a + 8 + \left(a^{2} + 9 a + 8\right)\cdot 13 + \left(2 a^{2} + 10 a + 6\right)\cdot 13^{2} + \left(7 a^{2} + 11 a + 1\right)\cdot 13^{3} + \left(4 a^{2} + 6 a + 11\right)\cdot 13^{4} + \left(4 a^{2} + 10 a + 1\right)\cdot 13^{5} +O(13^{6})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 12 a^{2} + 7 a + 5 + \left(7 a^{2} + 12 a + 9\right)\cdot 13 + \left(11 a^{2} + 4 a + 11\right)\cdot 13^{2} + \left(5 a^{2} + 7 a + 12\right)\cdot 13^{3} + \left(8 a^{2} + 10 a + 10\right)\cdot 13^{4} + \left(12 a^{2} + 11 a + 11\right)\cdot 13^{5} +O(13^{6})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 7 a^{2} + 6 a + 5 + \left(9 a^{2} + 9 a + 6\right)\cdot 13 + \left(7 a^{2} + 5\right)\cdot 13^{2} + \left(2 a^{2} + 6 a + 8\right)\cdot 13^{3} + \left(5 a^{2} + 5 a + 7\right)\cdot 13^{4} + \left(6 a^{2} + 11 a + 4\right)\cdot 13^{5} +O(13^{6})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(2,6,7,4)(3,5)$
$(1,4)(2,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$7$
$21$$2$$(1,4)(2,5)$$-1$
$56$$3$$(1,6,4)(2,5,7)$$1$
$42$$4$$(1,5,6,7)(2,3)$$-1$
$24$$7$$(1,2,3,5,6,7,4)$$0$
$24$$7$$(1,5,4,3,7,2,6)$$0$

The blue line marks the conjugacy class containing complex conjugation.