Properties

Label 7.903...521.8t37.b.a
Dimension $7$
Group $\GL(3,2)$
Conductor $9.038\times 10^{14}$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $7$
Group: $\GL(3,2)$
Conductor: \(903801345497521\)\(\medspace = 5483^{4} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 7.3.30063289.2
Galois orbit size: $1$
Smallest permutation container: $\PSL(2,7)$
Parity: even
Determinant: 1.1.1t1.a.a
Projective image: $\GL(3,2)$
Projective stem field: Galois closure of 7.3.30063289.2

Defining polynomial

$f(x)$$=$ \( x^{7} - x^{6} - 4x^{5} + 3x^{4} + 8x^{3} - 6x + 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 6.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: \( x^{3} + 2x + 11 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 3 a^{2} + 5 a + 5 + \left(8 a^{2} + 2 a\right)\cdot 13 + \left(4 a^{2} + 2 a + 6\right)\cdot 13^{2} + \left(a^{2} + 4 a + 7\right)\cdot 13^{3} + \left(10 a^{2} + 2 a + 11\right)\cdot 13^{4} + \left(7 a^{2} + 12\right)\cdot 13^{5} +O(13^{6})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 9 a^{2} + 2 a + \left(9 a^{2} + 11 a + 11\right)\cdot 13 + \left(5 a^{2} + 10 a + 11\right)\cdot 13^{2} + \left(8 a^{2} + 6 a + 3\right)\cdot 13^{3} + a^{2} 13^{4} + \left(8 a^{2} + 4 a + 9\right)\cdot 13^{5} +O(13^{6})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 5 a^{2} + 9 a + 7 + \left(8 a^{2} + 9 a + 7\right)\cdot 13 + \left(10 a + 4\right)\cdot 13^{2} + \left(a^{2} + 9 a + 8\right)\cdot 13^{3} + \left(a^{2} + 12 a + 11\right)\cdot 13^{4} + \left(3 a^{2} + 5 a + 1\right)\cdot 13^{5} +O(13^{6})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 5 a^{2} + 6 a + 7 + \left(9 a^{2} + 4\right)\cdot 13 + 4 a\cdot 13^{2} + \left(7 a^{2} + 3 a + 12\right)\cdot 13^{3} + \left(3 a^{2} + a + 1\right)\cdot 13^{4} + \left(11 a^{2} + 11 a + 4\right)\cdot 13^{5} +O(13^{6})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( a^{2} + 6 a + 11 + \left(8 a^{2} + 12 a + 8\right)\cdot 13 + \left(2 a^{2} + 12 a + 7\right)\cdot 13^{2} + \left(3 a^{2} + a + 5\right)\cdot 13^{3} + \left(a^{2} + 10 a + 8\right)\cdot 13^{4} + \left(10 a^{2} + 8 a + 11\right)\cdot 13^{5} +O(13^{6})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 3 a^{2} + 11 a + \left(8 a^{2} + 2 a + 3\right)\cdot 13 + \left(11 a^{2} + 11 a + 6\right)\cdot 13^{2} + \left(4 a^{2} + 12 a\right)\cdot 13^{3} + \left(8 a^{2} + 11 a + 4\right)\cdot 13^{4} + \left(11 a^{2} + 8 a\right)\cdot 13^{5} +O(13^{6})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 10 + 3\cdot 13 + 2\cdot 13^{2} + 13^{3} + 13^{4} + 12\cdot 13^{5} +O(13^{6})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(2,3)(5,6)$
$(1,6)(2,4,7,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$7$
$21$$2$$(2,3)(5,6)$$-1$
$56$$3$$(2,3,7)(4,5,6)$$1$
$42$$4$$(1,6)(2,4,7,5)$$-1$
$24$$7$$(1,6,2,3,4,7,5)$$0$
$24$$7$$(1,3,5,2,7,6,4)$$0$

The blue line marks the conjugacy class containing complex conjugation.