Properties

Label 7.3803e4.8t37.1c1
Dimension 7
Group $\GL(3,2)$
Conductor $ 3803^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$7$
Group:$\GL(3,2)$
Conductor:$209172844170481= 3803^{4} $
Artin number field: Splitting field of $f= x^{7} - 3 x^{6} + 3 x^{5} + 3 x^{4} - 13 x^{3} + 17 x^{2} - 10 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PSL(2,7)$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{3} + 2 x + 9 $
Roots:
$r_{ 1 }$ $=$ $ 4 + 8\cdot 11 + 4\cdot 11^{2} + 11^{3} + 8\cdot 11^{4} + 9\cdot 11^{5} +O\left(11^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 3 a^{2} + 6 a + 9 + \left(a + 5\right)\cdot 11 + \left(8 a^{2} + 7 a + 6\right)\cdot 11^{2} + \left(3 a^{2} + 3 a + 10\right)\cdot 11^{3} + \left(8 a^{2} + 5 a + 9\right)\cdot 11^{4} + \left(8 a^{2} + 6 a + 9\right)\cdot 11^{5} +O\left(11^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 8 a + 5 + \left(5 a^{2} + 2 a + 8\right)\cdot 11 + \left(10 a^{2} + 6 a + 9\right)\cdot 11^{2} + \left(6 a^{2} + 10 a + 3\right)\cdot 11^{3} + \left(8 a^{2} + a + 10\right)\cdot 11^{4} + \left(5 a^{2} + 5\right)\cdot 11^{5} +O\left(11^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 5 a^{2} + 2 a + 5 + \left(6 a^{2} + 7 a\right)\cdot 11 + \left(5 a^{2} + a + 10\right)\cdot 11^{2} + \left(7 a^{2} + 3\right)\cdot 11^{3} + \left(10 a^{2} + 9 a + 5\right)\cdot 11^{4} + \left(3 a^{2} + 7\right)\cdot 11^{5} +O\left(11^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 3 a^{2} + 9 a + 6 + \left(6 a^{2} + 8 a + 7\right)\cdot 11 + \left(4 a^{2} + 8\right)\cdot 11^{2} + \left(10 a^{2} + 9 a + 7\right)\cdot 11^{3} + \left(3 a^{2} + 7 a + 3\right)\cdot 11^{4} + \left(7 a + 6\right)\cdot 11^{5} +O\left(11^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 3 a^{2} + 6 + \left(9 a^{2} + 6 a\right)\cdot 11 + 8 a\cdot 11^{2} + \left(4 a^{2} + a + 3\right)\cdot 11^{3} + \left(7 a^{2} + 5 a + 8\right)\cdot 11^{4} + \left(6 a^{2} + 2 a + 3\right)\cdot 11^{5} +O\left(11^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 8 a^{2} + 8 a + 1 + \left(5 a^{2} + 6 a + 2\right)\cdot 11 + \left(3 a^{2} + 8 a + 4\right)\cdot 11^{2} + \left(7 a + 2\right)\cdot 11^{3} + \left(5 a^{2} + 3 a + 9\right)\cdot 11^{4} + \left(7 a^{2} + 4 a\right)\cdot 11^{5} +O\left(11^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,7,6,2)(4,5)$
$(1,4)(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$7$
$21$$2$$(1,4)(2,3)$$-1$
$56$$3$$(1,6,3)(2,5,7)$$1$
$42$$4$$(1,7,6,2)(4,5)$$-1$
$24$$7$$(1,5,4,7,6,2,3)$$0$
$24$$7$$(1,7,3,4,2,5,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.