Properties

Label 7.2e8_937e4.8t37.2
Dimension 7
Group $\GL(3,2)$
Conductor $ 2^{8} \cdot 937^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$7$
Group:$\GL(3,2)$
Conductor:$197332368630016= 2^{8} \cdot 937^{4} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} - x^{5} + 6 x^{4} - 7 x^{3} + 3 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PSL(2,7)$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{3} + 2 x + 11 $
Roots:
$r_{ 1 }$ $=$ $ 7 a^{2} + 8 a + 5 + \left(7 a^{2} + 3 a + 8\right)\cdot 13 + \left(5 a^{2} + 2 a + 10\right)\cdot 13^{2} + \left(12 a^{2} + 8 a + 4\right)\cdot 13^{3} + \left(6 a^{2} + 6 a + 12\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 9 a^{2} + 2 a + 6 + \left(7 a^{2} + 12 a + 8\right)\cdot 13 + \left(10 a^{2} + 6 a + 1\right)\cdot 13^{2} + \left(12 a^{2} + 4 a + 11\right)\cdot 13^{3} + \left(4 a^{2} + 6 a + 12\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 10 a^{2} + 10 a + 9 + \left(9 a^{2} + 4 a + 2\right)\cdot 13 + \left(12 a + 4\right)\cdot 13^{2} + \left(a^{2} + 4 a + 11\right)\cdot 13^{3} + \left(12 a^{2} + 9 a + 1\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 3 a^{2} + 5 a + 11 + \left(3 a^{2} + 11 a + 6\right)\cdot 13 + \left(a + 9\right)\cdot 13^{2} + \left(6 a^{2} + 11 a + 10\right)\cdot 13^{3} + \left(3 a^{2} + 4 a + 10\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 9 a^{2} + 8 a + 12 + \left(8 a^{2} + 4 a + 9\right)\cdot 13 + \left(6 a^{2} + 11 a + 7\right)\cdot 13^{2} + \left(12 a^{2} + 12 a\right)\cdot 13^{3} + \left(6 a^{2} + 9 a + 8\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 6 }$ $=$ $ a^{2} + 6 a + 4 + \left(2 a^{2} + 2 a + 5\right)\cdot 13 + \left(2 a^{2} + 4 a + 3\right)\cdot 13^{2} + \left(7 a^{2} + 10 a + 12\right)\cdot 13^{3} + \left(4 a^{2} + a + 7\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 7 + 10\cdot 13 + 13^{2} + 13^{3} + 11\cdot 13^{4} +O\left(13^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2)(3,6)$
$(1,3,5,7)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $7$
$21$ $2$ $(1,2)(3,6)$ $-1$
$56$ $3$ $(1,4,5)(2,3,7)$ $1$
$42$ $4$ $(1,3,5,7)(4,6)$ $-1$
$24$ $7$ $(1,6,4,3,5,7,2)$ $0$
$24$ $7$ $(1,3,2,4,7,6,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.