Properties

Label 7.122...424.8t37.a
Dimension $7$
Group $\GL(3,2)$
Conductor $1.222\times 10^{13}$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$7$
Group:$\GL(3,2)$
Conductor:\(12217597455424\)\(\medspace = 2^{6} \cdot 661^{4} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 7.3.27962944.2
Galois orbit size: $1$
Smallest permutation container: $\PSL(2,7)$
Parity: even
Projective image: $\PSL(2,7)$
Projective field: Galois closure of 7.3.27962944.2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: \( x^{3} + 2x + 27 \) Copy content Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 11 a^{2} + 24 a + 18 + \left(19 a^{2} + 21 a + 2\right)\cdot 29 + \left(22 a^{2} + 24 a + 4\right)\cdot 29^{2} + \left(11 a^{2} + 28 a + 26\right)\cdot 29^{3} + \left(24 a^{2} + 15 a + 11\right)\cdot 29^{4} +O(29^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 18 + 3\cdot 29 + 10\cdot 29^{2} + 2\cdot 29^{3} + 12\cdot 29^{4} +O(29^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 25 a^{2} + 16 a + 5 + \left(13 a^{2} + 21 a + 21\right)\cdot 29 + \left(14 a^{2} + 19 a + 22\right)\cdot 29^{2} + \left(3 a^{2} + a + 12\right)\cdot 29^{3} + \left(a^{2} + 9 a + 8\right)\cdot 29^{4} +O(29^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 19 a^{2} + 12 a + 26 + \left(17 a^{2} + 8 a + 6\right)\cdot 29 + \left(2 a^{2} + 25 a + 26\right)\cdot 29^{2} + \left(16 a^{2} + 16 a + 19\right)\cdot 29^{3} + \left(13 a^{2} + 19 a + 5\right)\cdot 29^{4} +O(29^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 21 a^{2} + 9 a + 12 + \left(5 a^{2} + 19 a + 13\right)\cdot 29 + \left(8 a^{2} + 5 a + 23\right)\cdot 29^{2} + \left(22 a^{2} + 20\right)\cdot 29^{3} + \left(7 a^{2} + 11 a + 18\right)\cdot 29^{4} +O(29^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 26 a^{2} + 25 a + 9 + \left(3 a^{2} + 16 a + 1\right)\cdot 29 + \left(27 a^{2} + 27 a + 10\right)\cdot 29^{2} + \left(23 a^{2} + 28 a + 13\right)\cdot 29^{3} + \left(25 a^{2} + a + 23\right)\cdot 29^{4} +O(29^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 14 a^{2} + a + \left(26 a^{2} + 28 a + 9\right)\cdot 29 + \left(11 a^{2} + 12 a + 19\right)\cdot 29^{2} + \left(9 a^{2} + 10 a + 20\right)\cdot 29^{3} + \left(14 a^{2} + 6\right)\cdot 29^{4} +O(29^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,7)(2,4)$
$(1,6,5,2)(3,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $7$
$21$ $2$ $(1,7)(2,4)$ $-1$
$56$ $3$ $(1,5,4)(2,3,6)$ $1$
$42$ $4$ $(1,6,5,2)(3,7)$ $-1$
$24$ $7$ $(1,6,5,4,2,7,3)$ $0$
$24$ $7$ $(1,4,3,5,7,6,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.