Properties

Label 7.2e12_653e4.8t37.1c1
Dimension 7
Group $\GL(3,2)$
Conductor $ 2^{12} \cdot 653^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$7$
Group:$\GL(3,2)$
Conductor:$744753706110976= 2^{12} \cdot 653^{4} $
Artin number field: Splitting field of $f= x^{7} - 3 x^{6} + 4 x^{5} - 5 x^{3} + 5 x^{2} + 3 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PSL(2,7)$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{3} + 2 x + 27 $
Roots:
$r_{ 1 }$ $=$ $ 19 a^{2} + \left(16 a^{2} + 20 a + 14\right)\cdot 29 + \left(11 a^{2} + 27 a + 17\right)\cdot 29^{2} + \left(17 a^{2} + 2 a + 4\right)\cdot 29^{3} + \left(9 a^{2} + 9 a + 17\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 10 a^{2} + a + 17 + \left(4 a^{2} + 8 a + 26\right)\cdot 29 + \left(5 a^{2} + 6 a + 8\right)\cdot 29^{2} + \left(7 a^{2} + 18 a + 10\right)\cdot 29^{3} + \left(26 a^{2} + 16 a + 10\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 28 a + 23 + \left(8 a^{2} + 21\right)\cdot 29 + \left(12 a^{2} + 24 a + 8\right)\cdot 29^{2} + \left(4 a^{2} + 7 a + 16\right)\cdot 29^{3} + \left(22 a^{2} + 3 a + 14\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 3 a^{2} + 15 a + 23 + \left(24 a^{2} + 11 a + 27\right)\cdot 29 + \left(12 a^{2} + 28 a + 19\right)\cdot 29^{2} + \left(17 a^{2} + 4 a + 15\right)\cdot 29^{3} + \left(24 a^{2} + 3 a + 7\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 24 a^{2} + 23 a + 22 + \left(6 a^{2} + 24 a + 4\right)\cdot 29 + \left(28 a^{2} + 28 a + 21\right)\cdot 29^{2} + \left(17 a^{2} + 5 a + 6\right)\cdot 29^{3} + \left(2 a^{2} + 13 a + 7\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 2 a^{2} + 20 a + 12 + \left(27 a^{2} + 21 a + 12\right)\cdot 29 + \left(16 a^{2} + 25\right)\cdot 29^{2} + \left(22 a^{2} + 18 a + 12\right)\cdot 29^{3} + \left(a^{2} + 12 a + 25\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 22 + 8\cdot 29 + 14\cdot 29^{2} + 20\cdot 29^{3} + 4\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(2,5)(3,7)$
$(1,5)(2,3,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$7$
$21$$2$$(2,4)(3,6)$$-1$
$56$$3$$(1,3,6)(2,7,4)$$1$
$42$$4$$(1,5)(2,3,4,6)$$-1$
$24$$7$$(1,2,7,3,4,6,5)$$0$
$24$$7$$(1,3,5,7,6,2,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.