Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{3} + x + 14 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 8 a^{2} + 12 a + 6 + \left(16 a^{2} + 15 a + 7\right)\cdot 17 + \left(a^{2} + 13 a + 5\right)\cdot 17^{2} + \left(9 a^{2} + 15 a + 5\right)\cdot 17^{3} + \left(a^{2} + 15 a + 15\right)\cdot 17^{4} + \left(a^{2} + 3\right)\cdot 17^{5} +O\left(17^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 5 a^{2} + 4 a + 5 + \left(5 a^{2} + 9 a + 11\right)\cdot 17 + \left(13 a^{2} + 10 a\right)\cdot 17^{2} + \left(10 a^{2} + 13 a + 6\right)\cdot 17^{3} + \left(5 a^{2} + 9 a + 6\right)\cdot 17^{4} + \left(15 a^{2} + 10 a + 14\right)\cdot 17^{5} +O\left(17^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 11 + 4\cdot 17 + 12\cdot 17^{2} + 5\cdot 17^{3} + 12\cdot 17^{5} +O\left(17^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 12 a^{2} + 10 a + 4 + \left(15 a^{2} + 4 a + 1\right)\cdot 17 + \left(16 a^{2} + 12 a + 3\right)\cdot 17^{2} + \left(2 a^{2} + a + 12\right)\cdot 17^{3} + \left(2 a^{2} + 13 a + 9\right)\cdot 17^{4} + \left(7 a^{2} + 7 a + 14\right)\cdot 17^{5} +O\left(17^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 7 a^{2} + 11 a + 11 + \left(11 a + 13\right)\cdot 17 + \left(11 a^{2} + 2 a + 5\right)\cdot 17^{2} + \left(9 a^{2} + 10 a + 11\right)\cdot 17^{3} + \left(9 a^{2} + 10 a + 3\right)\cdot 17^{4} + \left(11 a^{2} + 6 a + 5\right)\cdot 17^{5} +O\left(17^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 3 a + 13 + \left(13 a^{2} + 3 a + 10\right)\cdot 17 + \left(3 a^{2} + 11 a + 5\right)\cdot 17^{2} + \left(3 a^{2} + a + 12\right)\cdot 17^{3} + \left(9 a^{2} + 11 a + 8\right)\cdot 17^{4} + \left(11 a^{2} + 15 a\right)\cdot 17^{5} +O\left(17^{ 6 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 2 a^{2} + 11 a + 2 + \left(6 a + 2\right)\cdot 17 + \left(4 a^{2} + 1\right)\cdot 17^{2} + \left(15 a^{2} + 8 a + 15\right)\cdot 17^{3} + \left(5 a^{2} + 7 a + 6\right)\cdot 17^{4} + \left(4 a^{2} + 9 a\right)\cdot 17^{5} +O\left(17^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 7 }$
| Cycle notation |
| $(2,5)(3,4)$ |
| $(1,5,4,6)(2,7)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 7 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$7$ |
| $21$ |
$2$ |
$(2,5)(3,4)$ |
$-1$ |
| $56$ |
$3$ |
$(1,4,7)(3,5,6)$ |
$1$ |
| $42$ |
$4$ |
$(1,5,4,6)(2,7)$ |
$-1$ |
| $24$ |
$7$ |
$(1,5,7,2,4,3,6)$ |
$0$ |
| $24$ |
$7$ |
$(1,2,6,7,3,5,4)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.