Properties

Label 7.11e4_401e4.8t37.2c1
Dimension 7
Group $\GL(3,2)$
Conductor $ 11^{4} \cdot 401^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$7$
Group:$\GL(3,2)$
Conductor:$378571774800241= 11^{4} \cdot 401^{4} $
Artin number field: Splitting field of $f= x^{7} - 5 x^{5} - 4 x^{4} + 3 x^{3} + 3 x^{2} + 2 x + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PSL(2,7)$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{3} + x + 28 $
Roots:
$r_{ 1 }$ $=$ $ 26 a^{2} + 30 a + 18 + \left(28 a^{2} + 22 a + 11\right)\cdot 31 + \left(28 a^{2} + 2 a + 10\right)\cdot 31^{2} + \left(9 a^{2} + a + 25\right)\cdot 31^{3} + \left(3 a^{2} + 21 a + 16\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 15 a + 14 + \left(28 a^{2} + 28 a + 21\right)\cdot 31 + \left(28 a^{2} + 29 a + 6\right)\cdot 31^{2} + \left(23 a^{2} + 17 a + 14\right)\cdot 31^{3} + \left(25 a^{2} + 13 a + 1\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 19 a + 11 + \left(25 a^{2} + 18 a + 19\right)\cdot 31 + \left(18 a^{2} + 18 a + 3\right)\cdot 31^{2} + \left(13 a^{2} + 9 a + 7\right)\cdot 31^{3} + \left(26 a^{2} + 22 a + 1\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 17 a^{2} + 7 a + 15 + \left(23 a^{2} + 12 a + 18\right)\cdot 31 + \left(30 a^{2} + 27 a + 28\right)\cdot 31^{2} + \left(12 a^{2} + 25 a + 6\right)\cdot 31^{3} + \left(27 a^{2} + 3 a + 23\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 5 a^{2} + 13 a + 4 + \left(8 a^{2} + 20 a + 8\right)\cdot 31 + \left(14 a^{2} + 9 a + 21\right)\cdot 31^{2} + \left(7 a^{2} + 20 a + 23\right)\cdot 31^{3} + \left(a^{2} + 18 a + 25\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 14 a^{2} + 9 a + 13 + \left(10 a^{2} + 21 a + 30\right)\cdot 31 + \left(2 a^{2} + 4 a + 19\right)\cdot 31^{2} + \left(25 a^{2} + 18 a + 4\right)\cdot 31^{3} + \left(8 a^{2} + 13 a + 21\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 18 + 14\cdot 31 + 2\cdot 31^{2} + 11\cdot 31^{3} + 3\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,6)(3,4)$
$(1,3,7,2)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$7$
$21$$2$$(1,7)(2,3)$$-1$
$56$$3$$(1,4,7)(2,5,3)$$1$
$42$$4$$(1,3,7,2)(5,6)$$-1$
$24$$7$$(1,4,3,7,2,6,5)$$0$
$24$$7$$(1,7,5,3,6,4,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.