Properties

Label 6.89e5_599e5_743e5.14t46.1c1
Dimension 6
Group $S_7$
Conductor $ 89^{5} \cdot 599^{5} \cdot 743^{5}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_7$
Conductor:$97505298005073971271116505130703121593= 89^{5} \cdot 599^{5} \cdot 743^{5} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 7 x^{5} + 3 x^{4} + 10 x^{3} - 3 x^{2} - 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 14T46
Parity: Even
Determinant: 1.89_599_743.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 137 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 137 }$: $ x^{2} + 131 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 93 a + 63 + \left(81 a + 73\right)\cdot 137 + \left(78 a + 123\right)\cdot 137^{2} + \left(100 a + 64\right)\cdot 137^{3} + \left(131 a + 94\right)\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 124 a + 136 + \left(85 a + 3\right)\cdot 137 + \left(35 a + 90\right)\cdot 137^{2} + \left(42 a + 1\right)\cdot 137^{3} + \left(107 a + 126\right)\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 56 + 27\cdot 137 + 21\cdot 137^{2} + 129\cdot 137^{3} + 42\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 95 a + 2 + \left(8 a + 84\right)\cdot 137 + \left(100 a + 111\right)\cdot 137^{2} + \left(34 a + 59\right)\cdot 137^{3} + \left(37 a + 45\right)\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 44 a + 73 + \left(55 a + 59\right)\cdot 137 + \left(58 a + 102\right)\cdot 137^{2} + \left(36 a + 41\right)\cdot 137^{3} + \left(5 a + 99\right)\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 42 a + 24 + \left(128 a + 41\right)\cdot 137 + \left(36 a + 18\right)\cdot 137^{2} + \left(102 a + 31\right)\cdot 137^{3} + \left(99 a + 97\right)\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 13 a + 58 + \left(51 a + 121\right)\cdot 137 + \left(101 a + 80\right)\cdot 137^{2} + \left(94 a + 82\right)\cdot 137^{3} + \left(29 a + 42\right)\cdot 137^{4} +O\left(137^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$6$
$21$$2$$(1,2)$$-4$
$105$$2$$(1,2)(3,4)(5,6)$$0$
$105$$2$$(1,2)(3,4)$$2$
$70$$3$$(1,2,3)$$3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$-2$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$1$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$-1$
$504$$10$$(1,2,3,4,5)(6,7)$$1$
$420$$12$$(1,2,3,4)(5,6,7)$$1$
The blue line marks the conjugacy class containing complex conjugation.