Properties

Label 6.83934569e5.14t46.1
Dimension 6
Group $S_7$
Conductor $ 83934569^{5}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_7$
Conductor:$4165856668701115417696631747515024403849= 83934569^{5} $
Artin number field: Splitting field of $f= x^{7} - 8 x^{5} + 19 x^{3} - x^{2} - 13 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 14T46
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 127 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 127 }$: $ x^{2} + 126 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 84 + 126\cdot 127 + 45\cdot 127^{2} + 67\cdot 127^{3} + 90\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 7 a + 38 + \left(125 a + 79\right)\cdot 127 + 28 a\cdot 127^{2} + \left(68 a + 53\right)\cdot 127^{3} + \left(55 a + 84\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 53 a + 60 + \left(88 a + 93\right)\cdot 127 + \left(62 a + 73\right)\cdot 127^{2} + \left(61 a + 57\right)\cdot 127^{3} + \left(28 a + 97\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 120 a + 45 + \left(a + 70\right)\cdot 127 + \left(98 a + 31\right)\cdot 127^{2} + \left(58 a + 92\right)\cdot 127^{3} + \left(71 a + 71\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 74 a + 113 + \left(38 a + 1\right)\cdot 127 + \left(64 a + 48\right)\cdot 127^{2} + \left(65 a + 56\right)\cdot 127^{3} + \left(98 a + 64\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 72 + 62\cdot 127 + 85\cdot 127^{2} + 24\cdot 127^{3} + 75\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 96 + 73\cdot 127 + 95\cdot 127^{2} + 29\cdot 127^{3} + 24\cdot 127^{4} +O\left(127^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$21$ $2$ $(1,2)$ $-4$
$105$ $2$ $(1,2)(3,4)(5,6)$ $0$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $-2$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $-1$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $1$
The blue line marks the conjugacy class containing complex conjugation.