Properties

Label 6.7e6_19e3.9t10.1
Dimension 6
Group $(C_9:C_3):C_2$
Conductor $ 7^{6} \cdot 19^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$(C_9:C_3):C_2$
Conductor:$806954491= 7^{6} \cdot 19^{3} $
Artin number field: Splitting field of $f= x^{9} - x^{8} + 2 x^{7} + 14 x^{6} - 14 x^{5} - 21 x^{4} + 35 x^{3} - 11 x^{2} + 4 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_9:C_3):C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 19.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{3} + x + 14 $
Roots:
$r_{ 1 }$ $=$ $ a^{2} + 14 a + 14 + \left(6 a^{2} + 2 a + 1\right)\cdot 17 + \left(3 a + 14\right)\cdot 17^{2} + \left(a^{2} + 12 a + 15\right)\cdot 17^{3} + \left(a^{2} + 10 a + 8\right)\cdot 17^{4} + \left(9 a^{2} + 12 a + 7\right)\cdot 17^{5} + \left(11 a^{2} + 6 a + 6\right)\cdot 17^{6} + \left(14 a^{2} + 12 a + 3\right)\cdot 17^{7} + \left(6 a^{2} + 10\right)\cdot 17^{8} + \left(11 a^{2} + a + 11\right)\cdot 17^{9} + \left(13 a^{2} + 5\right)\cdot 17^{10} + \left(12 a^{2} + 12 a + 15\right)\cdot 17^{11} + \left(12 a^{2} + 14\right)\cdot 17^{12} + \left(4 a^{2} + 7 a + 13\right)\cdot 17^{13} + \left(9 a^{2} + 7 a + 13\right)\cdot 17^{14} + \left(16 a^{2} + 7 a + 4\right)\cdot 17^{15} + \left(16 a^{2} + 15 a + 9\right)\cdot 17^{16} + \left(3 a^{2} + 14 a + 9\right)\cdot 17^{17} + \left(2 a + 10\right)\cdot 17^{18} +O\left(17^{ 19 }\right)$
$r_{ 2 }$ $=$ $ 10 + 14\cdot 17 + 12\cdot 17^{2} + 7\cdot 17^{3} + 10\cdot 17^{5} + 9\cdot 17^{7} + 6\cdot 17^{8} + 7\cdot 17^{9} + 9\cdot 17^{10} + 7\cdot 17^{11} + 16\cdot 17^{13} + 15\cdot 17^{14} + 12\cdot 17^{15} + 6\cdot 17^{16} + 17^{17} + 6\cdot 17^{18} +O\left(17^{ 19 }\right)$
$r_{ 3 }$ $=$ $ 12 a^{2} + 14 a + 10 + \left(14 a^{2} + 7\right)\cdot 17 + \left(9 a + 14\right)\cdot 17^{2} + \left(a + 3\right)\cdot 17^{3} + \left(2 a^{2} + 9 a + 15\right)\cdot 17^{4} + \left(5 a^{2} + 13 a + 4\right)\cdot 17^{5} + \left(15 a^{2} + 16 a + 3\right)\cdot 17^{6} + \left(7 a^{2} + 13 a + 10\right)\cdot 17^{7} + \left(14 a^{2} + 7 a + 9\right)\cdot 17^{8} + \left(13 a^{2} + 15 a + 7\right)\cdot 17^{9} + \left(11 a^{2} + 8 a + 4\right)\cdot 17^{10} + \left(14 a + 7\right)\cdot 17^{11} + \left(3 a^{2} + 7 a + 8\right)\cdot 17^{12} + \left(a^{2} + 12 a + 11\right)\cdot 17^{13} + \left(13 a^{2} + 11 a + 10\right)\cdot 17^{14} + \left(13 a^{2} + 6 a + 8\right)\cdot 17^{15} + \left(12 a^{2} + 9 a + 6\right)\cdot 17^{16} + \left(5 a^{2} + 10 a + 16\right)\cdot 17^{17} + \left(3 a^{2} + 5 a + 6\right)\cdot 17^{18} +O\left(17^{ 19 }\right)$
$r_{ 4 }$ $=$ $ 8 a^{2} + 14 a + 9 + \left(10 a^{2} + 2 a + 8\right)\cdot 17 + \left(8 a^{2} + 11 a\right)\cdot 17^{2} + \left(9 a^{2} + 8 a + 1\right)\cdot 17^{3} + \left(7 a^{2} + 5 a + 12\right)\cdot 17^{4} + \left(5 a^{2} + 5 a + 6\right)\cdot 17^{5} + \left(6 a^{2} + 4 a + 16\right)\cdot 17^{6} + \left(6 a^{2} + 7 a + 3\right)\cdot 17^{7} + \left(4 a^{2} + 14 a + 11\right)\cdot 17^{8} + \left(2 a^{2} + 16 a + 3\right)\cdot 17^{9} + \left(3 a + 11\right)\cdot 17^{10} + \left(8 a^{2} + 13 a + 16\right)\cdot 17^{11} + \left(2 a^{2} + 15 a + 6\right)\cdot 17^{12} + \left(14 a^{2} + 10 a + 15\right)\cdot 17^{13} + \left(13 a^{2} + 9 a + 3\right)\cdot 17^{14} + \left(2 a^{2} + 14 a + 8\right)\cdot 17^{15} + \left(7 a^{2} + 10 a + 11\right)\cdot 17^{16} + \left(6 a^{2} + 12 a + 8\right)\cdot 17^{17} + \left(10 a^{2} + 2 a + 3\right)\cdot 17^{18} +O\left(17^{ 19 }\right)$
$r_{ 5 }$ $=$ $ 16 a^{2} + 8 a + 3 + \left(16 a^{2} + 15 a + 7\right)\cdot 17 + \left(2 a^{2} + 11 a + 2\right)\cdot 17^{2} + \left(9 a + 6\right)\cdot 17^{3} + \left(15 a^{2} + 8 a + 11\right)\cdot 17^{4} + \left(5 a^{2} + 3 a + 12\right)\cdot 17^{5} + \left(9 a^{2} + 12 a + 12\right)\cdot 17^{6} + \left(2 a^{2} + a + 12\right)\cdot 17^{7} + \left(16 a^{2} + 10 a + 7\right)\cdot 17^{8} + \left(15 a^{2} + 10 a + 1\right)\cdot 17^{9} + \left(16 a^{2} + 10 a + 11\right)\cdot 17^{10} + \left(10 a^{2} + 11 a + 1\right)\cdot 17^{11} + \left(15 a^{2} + 14 a + 10\right)\cdot 17^{12} + \left(6 a^{2} + 14 a + 10\right)\cdot 17^{13} + \left(3 a^{2} + 10 a + 2\right)\cdot 17^{14} + \left(4 a^{2} + 15 a + 9\right)\cdot 17^{15} + \left(a^{2} + 4 a + 7\right)\cdot 17^{16} + \left(14 a^{2} + 5 a + 2\right)\cdot 17^{17} + \left(15 a^{2} + 7 a + 7\right)\cdot 17^{18} +O\left(17^{ 19 }\right)$
$r_{ 6 }$ $=$ $ 4 a^{2} + 6 a + 16 + \left(13 a^{2} + 13 a\right)\cdot 17 + \left(15 a^{2} + 4 a + 13\right)\cdot 17^{2} + \left(15 a^{2} + 3 a + 8\right)\cdot 17^{3} + \left(13 a^{2} + 14 a\right)\cdot 17^{4} + \left(2 a^{2} + 7 a + 9\right)\cdot 17^{5} + \left(7 a^{2} + 10 a + 3\right)\cdot 17^{6} + \left(11 a^{2} + 7 a + 1\right)\cdot 17^{7} + \left(12 a^{2} + 8 a + 14\right)\cdot 17^{8} + \left(8 a^{2} + 9\right)\cdot 17^{9} + \left(8 a^{2} + 8 a + 13\right)\cdot 17^{10} + \left(3 a^{2} + 7 a + 14\right)\cdot 17^{11} + \left(a^{2} + 8 a + 12\right)\cdot 17^{12} + \left(11 a^{2} + 14 a + 6\right)\cdot 17^{13} + \left(11 a^{2} + 14 a + 15\right)\cdot 17^{14} + \left(3 a^{2} + 2 a + 1\right)\cdot 17^{15} + \left(4 a^{2} + 9 a + 12\right)\cdot 17^{16} + \left(7 a^{2} + 8 a + 11\right)\cdot 17^{17} + \left(13 a^{2} + 8 a + 13\right)\cdot 17^{18} +O\left(17^{ 19 }\right)$
$r_{ 7 }$ $=$ $ 10 a^{2} + 12 a + 16 + \left(6 a^{2} + 15 a + 5\right)\cdot 17 + \left(5 a^{2} + 10 a + 15\right)\cdot 17^{2} + \left(7 a^{2} + 15 a + 10\right)\cdot 17^{3} + \left(11 a^{2} + 2 a + 14\right)\cdot 17^{4} + \left(5 a^{2} + 8 a + 6\right)\cdot 17^{5} + \left(a^{2} + 7\right)\cdot 17^{6} + \left(8 a^{2} + 8 a + 16\right)\cdot 17^{7} + \left(13 a^{2} + 9 a + 5\right)\cdot 17^{8} + \left(15 a^{2} + 6 a + 1\right)\cdot 17^{9} + \left(16 a^{2} + 2 a + 11\right)\cdot 17^{10} + \left(14 a^{2} + 9 a + 15\right)\cdot 17^{11} + \left(15 a^{2} + 3 a + 15\right)\cdot 17^{12} + \left(12 a^{2} + 8 a + 8\right)\cdot 17^{13} + \left(16 a^{2} + 13 a + 11\right)\cdot 17^{14} + \left(9 a^{2} + 3 a + 1\right)\cdot 17^{15} + \left(8 a^{2} + a + 1\right)\cdot 17^{16} + \left(13 a^{2} + 16 a + 2\right)\cdot 17^{17} + \left(7 a^{2} + 6 a + 13\right)\cdot 17^{18} +O\left(17^{ 19 }\right)$
$r_{ 8 }$ $=$ $ 2 + 14\cdot 17^{2} + 13\cdot 17^{3} + 2\cdot 17^{4} + 17^{5} + 2\cdot 17^{6} + 6\cdot 17^{8} + 12\cdot 17^{9} + 3\cdot 17^{10} + 7\cdot 17^{11} + 17^{12} + 14\cdot 17^{13} + 5\cdot 17^{14} + 2\cdot 17^{15} + 5\cdot 17^{16} + 8\cdot 17^{17} + 8\cdot 17^{18} +O\left(17^{ 19 }\right)$
$r_{ 9 }$ $=$ $ 6 + 4\cdot 17 + 15\cdot 17^{2} + 16\cdot 17^{3} + 17^{4} + 9\cdot 17^{5} + 15\cdot 17^{6} + 10\cdot 17^{7} + 13\cdot 17^{8} + 12\cdot 17^{9} + 14\cdot 17^{10} + 15\cdot 17^{11} + 13\cdot 17^{12} + 4\cdot 17^{13} + 5\cdot 17^{14} + 17^{15} + 8\cdot 17^{16} + 7\cdot 17^{17} + 15\cdot 17^{18} +O\left(17^{ 19 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,4,8,6,7,2,3,5,9)$
$(1,3,6)(4,7,5)$
$(2,4)(3,6)(5,9)(7,8)$
$(2,9,8)(4,5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$9$ $2$ $(1,8)(2,3)(4,7)(6,9)$ $0$
$2$ $3$ $(1,6,3)(2,9,8)(4,7,5)$ $-3$
$3$ $3$ $(1,3,6)(4,7,5)$ $0$
$3$ $3$ $(1,6,3)(4,5,7)$ $0$
$9$ $6$ $(1,2,6,8,3,9)(4,7)$ $0$
$9$ $6$ $(1,9,3,8,6,2)(4,7)$ $0$
$6$ $9$ $(1,4,8,6,7,2,3,5,9)$ $0$
$6$ $9$ $(1,8,7,3,9,4,6,2,5)$ $0$
$6$ $9$ $(1,7,2,6,5,9,3,4,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.