Properties

Label 6.7e4_463e3.20t35.1c1
Dimension 6
Group $S_5$
Conductor $ 7^{4} \cdot 463^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_5$
Conductor:$238306085647= 7^{4} \cdot 463^{3} $
Artin number field: Splitting field of $f= x^{5} - x^{4} + x^{3} - x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T35
Parity: Odd
Determinant: 1.463.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 10 a + 2 + \left(14 a + 2\right)\cdot 17 + \left(15 a + 14\right)\cdot 17^{2} + \left(6 a + 16\right)\cdot 17^{3} + \left(7 a + 8\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 2 }$ $=$ $ a + 9 + \left(5 a + 13\right)\cdot 17 + \left(15 a + 8\right)\cdot 17^{2} + \left(8 a + 6\right)\cdot 17^{3} + \left(11 a + 8\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 16 a + 10 + 11 a\cdot 17 + \left(a + 2\right)\cdot 17^{2} + 8 a\cdot 17^{3} + \left(5 a + 11\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 2 + 11\cdot 17 + 10\cdot 17^{2} + 2\cdot 17^{3} + 13\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 7 a + 12 + \left(2 a + 6\right)\cdot 17 + \left(a + 15\right)\cdot 17^{2} + \left(10 a + 7\right)\cdot 17^{3} + \left(9 a + 9\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$6$
$10$$2$$(1,2)$$0$
$15$$2$$(1,2)(3,4)$$-2$
$20$$3$$(1,2,3)$$0$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$1$
$20$$6$$(1,2,3)(4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.