Properties

Label 6.7e4_107e3.7t4.1c1
Dimension 6
Group $F_7$
Conductor $ 7^{4} \cdot 107^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$F_7$
Conductor:$2941328243= 7^{4} \cdot 107^{3} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 8 x^{5} + 6 x^{4} + 20 x^{3} - 22 x^{2} - x + 54 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $F_7$
Parity: Odd
Determinant: 1.107.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 15.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{3} + 2 x + 9 $
Roots:
$r_{ 1 }$ $=$ $ 7 a^{2} + 3 a + 5 + \left(2 a^{2} + 5\right)\cdot 11 + \left(8 a^{2} + 7\right)\cdot 11^{2} + \left(10 a^{2} + 6 a + 4\right)\cdot 11^{3} + \left(6 a^{2} + a + 2\right)\cdot 11^{4} + \left(4 a^{2} + 6 a + 9\right)\cdot 11^{5} + \left(4 a^{2} + 5 a + 3\right)\cdot 11^{6} + \left(3 a^{2} + 4 a + 6\right)\cdot 11^{7} + \left(6 a^{2} + 8 a + 1\right)\cdot 11^{8} + \left(2 a^{2} + 4 a + 6\right)\cdot 11^{9} + \left(9 a^{2} + 10 a\right)\cdot 11^{10} + \left(4 a^{2} + 7 a\right)\cdot 11^{11} + \left(8 a^{2} + 2 a + 2\right)\cdot 11^{12} + \left(10 a^{2} + 2 a + 3\right)\cdot 11^{13} + \left(5 a^{2} + 5 a + 4\right)\cdot 11^{14} +O\left(11^{ 15 }\right)$
$r_{ 2 }$ $=$ $ a^{2} + 8 a + 4 + \left(6 a^{2} + 7 a + 3\right)\cdot 11 + \left(3 a^{2} + 6 a + 7\right)\cdot 11^{2} + \left(5 a^{2} + 10 a + 7\right)\cdot 11^{3} + \left(2 a^{2} + a + 8\right)\cdot 11^{4} + \left(2 a^{2} + 9 a + 10\right)\cdot 11^{5} + \left(a^{2} + 9 a + 6\right)\cdot 11^{6} + \left(5 a^{2} + 9 a + 8\right)\cdot 11^{7} + \left(4 a^{2} + 10 a + 3\right)\cdot 11^{8} + \left(5 a^{2} + a\right)\cdot 11^{9} + \left(6 a^{2} + 9 a + 4\right)\cdot 11^{10} + \left(7 a^{2} + a + 4\right)\cdot 11^{11} + \left(6 a^{2} + 4 a\right)\cdot 11^{12} + \left(9 a^{2} + 2 a + 3\right)\cdot 11^{13} + \left(2 a^{2} + 10 a\right)\cdot 11^{14} +O\left(11^{ 15 }\right)$
$r_{ 3 }$ $=$ $ 4 a + 3 + \left(8 a^{2} + 4 a + 5\right)\cdot 11 + \left(5 a^{2} + a\right)\cdot 11^{2} + \left(9 a^{2} + a + 3\right)\cdot 11^{3} + \left(9 a^{2} + 6 a + 6\right)\cdot 11^{4} + \left(8 a^{2} + 7 a + 7\right)\cdot 11^{5} + \left(6 a^{2} + a + 10\right)\cdot 11^{6} + \left(7 a^{2} + 3 a\right)\cdot 11^{7} + \left(a^{2} + 10\right)\cdot 11^{8} + \left(7 a^{2} + 3 a + 4\right)\cdot 11^{9} + \left(6 a^{2} + 8 a + 4\right)\cdot 11^{10} + \left(4 a^{2} + 3 a + 3\right)\cdot 11^{11} + \left(9 a^{2} + 4 a + 3\right)\cdot 11^{12} + \left(6 a^{2} + 2 a + 5\right)\cdot 11^{13} + \left(4 a + 4\right)\cdot 11^{14} +O\left(11^{ 15 }\right)$
$r_{ 4 }$ $=$ $ 4 a^{2} + 4 a + 1 + \left(6 a + 6\right)\cdot 11 + \left(8 a^{2} + 9 a + 3\right)\cdot 11^{2} + \left(a^{2} + 3 a + 7\right)\cdot 11^{3} + \left(5 a^{2} + 3 a + 3\right)\cdot 11^{4} + \left(8 a^{2} + 8 a + 3\right)\cdot 11^{5} + \left(10 a^{2} + 3 a + 1\right)\cdot 11^{6} + \left(10 a^{2} + 3 a + 9\right)\cdot 11^{7} + \left(2 a^{2} + 2 a\right)\cdot 11^{8} + \left(a^{2} + 3 a + 8\right)\cdot 11^{9} + \left(6 a^{2} + 3 a + 3\right)\cdot 11^{10} + \left(a^{2} + 10 a + 10\right)\cdot 11^{11} + \left(4 a^{2} + 3 a + 10\right)\cdot 11^{12} + \left(4 a^{2} + 6 a + 1\right)\cdot 11^{13} + \left(4 a^{2} + a + 2\right)\cdot 11^{14} +O\left(11^{ 15 }\right)$
$r_{ 5 }$ $=$ $ 6 a^{2} + 5 a + 7 + \left(7 a^{2} + 3 a + 1\right)\cdot 11 + \left(2 a^{2} + 8 a + 6\right)\cdot 11^{2} + \left(7 a^{2} + 2 a + 6\right)\cdot 11^{3} + \left(9 a^{2} + 3\right)\cdot 11^{4} + \left(7 a^{2} + 10 a + 7\right)\cdot 11^{5} + \left(6 a^{2} + 2 a + 10\right)\cdot 11^{6} + \left(7 a^{2} + 5 a\right)\cdot 11^{7} + \left(9 a^{2} + 4 a + 7\right)\cdot 11^{8} + \left(5 a^{2} + 5 a + 4\right)\cdot 11^{9} + \left(9 a^{2} + 5 a + 4\right)\cdot 11^{10} + \left(6 a^{2} + 2 a + 3\right)\cdot 11^{11} + \left(5 a^{2} + 5 a + 6\right)\cdot 11^{12} + \left(8 a + 5\right)\cdot 11^{13} + \left(6 a^{2} + 4 a + 4\right)\cdot 11^{14} +O\left(11^{ 15 }\right)$
$r_{ 6 }$ $=$ $ 4 a^{2} + 9 a + 8 + \left(8 a^{2} + 10 a + 2\right)\cdot 11 + \left(4 a^{2} + 6 a + 5\right)\cdot 11^{2} + \left(9 a^{2} + 8 a + 9\right)\cdot 11^{3} + \left(9 a^{2} + 8 a + 3\right)\cdot 11^{4} + \left(2 a + 5\right)\cdot 11^{5} + \left(3 a^{2} + 9 a + 9\right)\cdot 11^{6} + \left(9 a^{2} + 6 a + 6\right)\cdot 11^{7} + \left(7 a^{2} + 6 a + 4\right)\cdot 11^{8} + \left(10 a^{2} + 3 a + 7\right)\cdot 11^{9} + \left(5 a^{2} + 7 a + 10\right)\cdot 11^{10} + \left(7 a^{2} + 6 a + 7\right)\cdot 11^{11} + \left(9 a^{2} + a\right)\cdot 11^{12} + 6\cdot 11^{13} + \left(2 a^{2} + 7 a + 6\right)\cdot 11^{14} +O\left(11^{ 15 }\right)$
$r_{ 7 }$ $=$ $ 6 + 8\cdot 11 + 2\cdot 11^{2} + 5\cdot 11^{3} + 4\cdot 11^{4} + 11^{6} + 5\cdot 11^{8} + 11^{9} + 5\cdot 11^{10} + 3\cdot 11^{11} + 9\cdot 11^{12} + 7\cdot 11^{13} + 10\cdot 11^{14} +O\left(11^{ 15 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,7)(2,5)(4,6)$
$(1,2,5,7,4,3,6)$
$(1,5,6)(2,4,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$6$
$7$$2$$(1,7)(2,5)(4,6)$$0$
$7$$3$$(1,5,6)(2,4,7)$$0$
$7$$3$$(1,6,5)(2,7,4)$$0$
$7$$6$$(1,2,6,7,5,4)$$0$
$7$$6$$(1,4,5,7,6,2)$$0$
$6$$7$$(1,6,3,4,7,5,2)$$-1$
The blue line marks the conjugacy class containing complex conjugation.