Properties

Label 6.7_353_2137.7t7.1
Dimension 6
Group $S_7$
Conductor $ 7 \cdot 353 \cdot 2137 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_7$
Conductor:$5280527= 7 \cdot 353 \cdot 2137 $
Artin number field: Splitting field of $f= x^{7} - x^{5} - 3 x^{4} - 3 x^{3} + 5 x^{2} + 3 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_7$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 107 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 107 }$: $ x^{2} + 103 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 69 a + 96 + \left(38 a + 104\right)\cdot 107 + \left(41 a + 19\right)\cdot 107^{2} + \left(93 a + 12\right)\cdot 107^{3} + \left(26 a + 96\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 38 a + 51 + \left(68 a + 83\right)\cdot 107 + \left(65 a + 39\right)\cdot 107^{2} + \left(13 a + 23\right)\cdot 107^{3} + \left(80 a + 3\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 105 + 43\cdot 107 + 42\cdot 107^{2} + 84\cdot 107^{3} + 59\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 75 + 50\cdot 107 + 40\cdot 107^{2} + 35\cdot 107^{3} + 7\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 6 + 43\cdot 107 + 89\cdot 107^{2} + 60\cdot 107^{3} + 39\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 65 a + 78 + \left(78 a + 86\right)\cdot 107 + \left(a + 26\right)\cdot 107^{2} + \left(89 a + 89\right)\cdot 107^{3} + \left(10 a + 26\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 42 a + 17 + \left(28 a + 15\right)\cdot 107 + \left(105 a + 62\right)\cdot 107^{2} + \left(17 a + 15\right)\cdot 107^{3} + \left(96 a + 88\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$21$ $2$ $(1,2)$ $4$
$105$ $2$ $(1,2)(3,4)(5,6)$ $0$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $2$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $-1$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $-1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.