Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 17 a + 15 + \left(17 a + 18\right)\cdot 19 + \left(8 a + 4\right)\cdot 19^{2} + \left(6 a + 14\right)\cdot 19^{3} + \left(8 a + 18\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 2 a + 13 + a\cdot 19 + \left(10 a + 15\right)\cdot 19^{2} + \left(12 a + 11\right)\cdot 19^{3} + \left(10 a + 1\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 16 + 5\cdot 19 + 2\cdot 19^{2} + 7\cdot 19^{4} +O\left(19^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 3 a + 6 + \left(9 a + 3\right)\cdot 19 + 12\cdot 19^{2} + \left(18 a + 6\right)\cdot 19^{3} + \left(5 a + 11\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 16 a + 9 + \left(9 a + 9\right)\cdot 19 + \left(18 a + 3\right)\cdot 19^{2} + 5\cdot 19^{3} + \left(13 a + 18\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$6$ |
| $10$ |
$2$ |
$(1,2)$ |
$0$ |
| $15$ |
$2$ |
$(1,2)(3,4)$ |
$-2$ |
| $20$ |
$3$ |
$(1,2,3)$ |
$0$ |
| $30$ |
$4$ |
$(1,2,3,4)$ |
$0$ |
| $24$ |
$5$ |
$(1,2,3,4,5)$ |
$1$ |
| $20$ |
$6$ |
$(1,2,3)(4,5)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.