Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 3 a + 8 + \left(18 a + 10\right)\cdot 23 + \left(4 a + 12\right)\cdot 23^{2} + \left(4 a + 12\right)\cdot 23^{3} + \left(11 a + 18\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 20 + 10\cdot 23 + 20\cdot 23^{2} + 14\cdot 23^{3} +O\left(23^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 21 a + 5 + \left(8 a + 15\right)\cdot 23 + 8\cdot 23^{2} + \left(10 a + 14\right)\cdot 23^{3} + 22 a\cdot 23^{4} +O\left(23^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 2 a + 1 + \left(14 a + 12\right)\cdot 23 + 22 a\cdot 23^{2} + \left(12 a + 11\right)\cdot 23^{3} + 12\cdot 23^{4} +O\left(23^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 20 a + 14 + \left(4 a + 20\right)\cdot 23 + \left(18 a + 3\right)\cdot 23^{2} + \left(18 a + 16\right)\cdot 23^{3} + \left(11 a + 13\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$6$ |
| $10$ |
$2$ |
$(1,2)$ |
$0$ |
| $15$ |
$2$ |
$(1,2)(3,4)$ |
$-2$ |
| $20$ |
$3$ |
$(1,2,3)$ |
$0$ |
| $30$ |
$4$ |
$(1,2,3,4)$ |
$0$ |
| $24$ |
$5$ |
$(1,2,3,4,5)$ |
$1$ |
| $20$ |
$6$ |
$(1,2,3)(4,5)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.