Properties

Label 6.71e5_8623e5.14t46.1
Dimension 6
Group $S_7$
Conductor $ 71^{5} \cdot 8623^{5}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_7$
Conductor:$86016877683213394104294116393= 71^{5} \cdot 8623^{5} $
Artin number field: Splitting field of $f= x^{7} - x^{6} + x^{5} - x^{3} + x^{2} - x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 14T46
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 25 a + 21 + \left(6 a + 20\right)\cdot 31 + \left(22 a + 19\right)\cdot 31^{2} + \left(6 a + 13\right)\cdot 31^{3} + \left(4 a + 24\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 27 + 5\cdot 31 + 12\cdot 31^{2} + 12\cdot 31^{3} + 14\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 28 a + 21 + 25\cdot 31 + \left(10 a + 16\right)\cdot 31^{2} + \left(16 a + 10\right)\cdot 31^{3} + \left(5 a + 24\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 10 + 28\cdot 31 + 17\cdot 31^{2} + 7\cdot 31^{3} + 19\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 3 a + 15 + \left(30 a + 30\right)\cdot 31 + \left(20 a + 4\right)\cdot 31^{2} + \left(14 a + 2\right)\cdot 31^{3} + \left(25 a + 19\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 22 + 3\cdot 31 + 26\cdot 31^{2} + 10\cdot 31^{3} + 27\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 6 a + 9 + \left(24 a + 9\right)\cdot 31 + \left(8 a + 26\right)\cdot 31^{2} + \left(24 a + 4\right)\cdot 31^{3} + \left(26 a + 26\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$21$ $2$ $(1,2)$ $-4$
$105$ $2$ $(1,2)(3,4)(5,6)$ $0$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $-2$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $-1$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $1$
The blue line marks the conjugacy class containing complex conjugation.