Properties

Label 6.689033e5.14t46.1c1
Dimension 6
Group $S_7$
Conductor $ 689033^{5}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_7$
Conductor:$155310247149144723981306980393= 689033^{5} $
Artin number field: Splitting field of $f= x^{7} - x^{5} - 3 x^{4} - x^{3} + 2 x^{2} + 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 14T46
Parity: Even
Determinant: 1.689033.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 257 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 257 }$: $ x^{2} + 251 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 237 + 69\cdot 257 + 255\cdot 257^{2} + 122\cdot 257^{3} + 199\cdot 257^{4} +O\left(257^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 6 a + 55 + \left(31 a + 67\right)\cdot 257 + \left(95 a + 88\right)\cdot 257^{2} + \left(77 a + 154\right)\cdot 257^{3} + \left(188 a + 45\right)\cdot 257^{4} +O\left(257^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 157 + 45\cdot 257 + 116\cdot 257^{2} + 2\cdot 257^{3} + 46\cdot 257^{4} +O\left(257^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 251 a + 91 + \left(225 a + 247\right)\cdot 257 + \left(161 a + 113\right)\cdot 257^{2} + \left(179 a + 9\right)\cdot 257^{3} + \left(68 a + 70\right)\cdot 257^{4} +O\left(257^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 214 a + 132 + \left(209 a + 113\right)\cdot 257 + \left(209 a + 193\right)\cdot 257^{2} + \left(150 a + 197\right)\cdot 257^{3} + \left(72 a + 243\right)\cdot 257^{4} +O\left(257^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 225 + 96\cdot 257 + 46\cdot 257^{2} + 162\cdot 257^{3} + 151\cdot 257^{4} +O\left(257^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 43 a + 131 + \left(47 a + 130\right)\cdot 257 + \left(47 a + 214\right)\cdot 257^{2} + \left(106 a + 121\right)\cdot 257^{3} + \left(184 a + 14\right)\cdot 257^{4} +O\left(257^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$6$
$21$$2$$(1,2)$$-4$
$105$$2$$(1,2)(3,4)(5,6)$$0$
$105$$2$$(1,2)(3,4)$$2$
$70$$3$$(1,2,3)$$3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$-2$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$1$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$-1$
$504$$10$$(1,2,3,4,5)(6,7)$$1$
$420$$12$$(1,2,3,4)(5,6,7)$$1$
The blue line marks the conjugacy class containing complex conjugation.