Properties

Label 6.5e6_7e5.9t10.1c1
Dimension 6
Group $(C_9:C_3):C_2$
Conductor $ 5^{6} \cdot 7^{5}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$(C_9:C_3):C_2$
Conductor:$262609375= 5^{6} \cdot 7^{5} $
Artin number field: Splitting field of $f= x^{9} - 3 x^{8} + 4 x^{7} - 7 x^{6} + 21 x^{5} - 42 x^{4} + 56 x^{3} - 68 x^{2} + 64 x - 27 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_9:C_3):C_2$
Parity: Odd
Determinant: 1.7.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{3} + 3 x + 51 $
Roots:
$r_{ 1 }$ $=$ $ 31 a^{2} + 51 a + 27 + \left(2 a^{2} + 5 a + 40\right)\cdot 53 + \left(32 a^{2} + 35 a + 28\right)\cdot 53^{2} + \left(30 a^{2} + 28 a + 43\right)\cdot 53^{3} + \left(15 a^{2} + 35 a + 48\right)\cdot 53^{4} + \left(33 a^{2} + 26 a + 48\right)\cdot 53^{5} + \left(40 a^{2} + 35 a + 45\right)\cdot 53^{6} + \left(26 a^{2} + 12 a + 35\right)\cdot 53^{7} + \left(16 a^{2} + 37 a + 50\right)\cdot 53^{8} + \left(41 a^{2} + 21 a + 11\right)\cdot 53^{9} + \left(43 a^{2} + 32 a + 52\right)\cdot 53^{10} +O\left(53^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 50 a^{2} + 27 a + 12 + \left(11 a^{2} + 29 a + 6\right)\cdot 53 + \left(30 a^{2} + 6 a + 25\right)\cdot 53^{2} + \left(18 a^{2} + a + 19\right)\cdot 53^{3} + \left(13 a^{2} + 43 a + 44\right)\cdot 53^{4} + \left(50 a^{2} + 36 a + 29\right)\cdot 53^{5} + \left(39 a^{2} + 20 a + 44\right)\cdot 53^{6} + \left(42 a^{2} + 14 a + 14\right)\cdot 53^{7} + \left(45 a^{2} + 13 a + 3\right)\cdot 53^{8} + \left(11 a^{2} + 23 a + 6\right)\cdot 53^{9} + \left(42 a^{2} + 4 a + 49\right)\cdot 53^{10} +O\left(53^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 43 + 6\cdot 53 + 3\cdot 53^{2} + 33\cdot 53^{3} + 16\cdot 53^{4} + 34\cdot 53^{5} + 8\cdot 53^{6} + 30\cdot 53^{7} + 2\cdot 53^{8} + 47\cdot 53^{9} + 23\cdot 53^{10} +O\left(53^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 50 a^{2} + 20 a + 12 + \left(38 a^{2} + 40 a + 7\right)\cdot 53 + \left(21 a^{2} + 2 a + 8\right)\cdot 53^{2} + \left(25 a^{2} + a + 33\right)\cdot 53^{3} + \left(44 a^{2} + 27 a\right)\cdot 53^{4} + \left(11 a^{2} + 24 a + 6\right)\cdot 53^{5} + \left(2 a^{2} + 10 a + 22\right)\cdot 53^{6} + \left(52 a^{2} + 25 a + 33\right)\cdot 53^{7} + \left(9 a^{2} + 29 a + 37\right)\cdot 53^{8} + \left(11 a^{2} + 38 a + 4\right)\cdot 53^{9} + \left(12 a^{2} + 50 a + 42\right)\cdot 53^{10} +O\left(53^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 6 a^{2} + 6 a + 30 + \left(2 a^{2} + 36 a + 39\right)\cdot 53 + \left(a^{2} + 43 a + 19\right)\cdot 53^{2} + \left(9 a^{2} + 50 a\right)\cdot 53^{3} + \left(48 a^{2} + 35 a + 8\right)\cdot 53^{4} + \left(43 a^{2} + 44 a + 17\right)\cdot 53^{5} + \left(10 a^{2} + 21 a + 39\right)\cdot 53^{6} + \left(11 a^{2} + 13 a + 4\right)\cdot 53^{7} + \left(50 a^{2} + 10 a + 12\right)\cdot 53^{8} + \left(29 a^{2} + 44 a + 42\right)\cdot 53^{9} + \left(51 a^{2} + 50 a + 14\right)\cdot 53^{10} +O\left(53^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 26 + 47\cdot 53 + 19\cdot 53^{2} + 53^{3} + 16\cdot 53^{4} + 37\cdot 53^{5} + 6\cdot 53^{6} + 3\cdot 53^{7} + 16\cdot 53^{8} + 6\cdot 53^{9} + 11\cdot 53^{10} +O\left(53^{ 11 }\right)$
$r_{ 7 }$ $=$ $ 14 a^{2} + 8 a + 46 + \left(32 a^{2} + 51 a + 46\right)\cdot 53 + \left(31 a^{2} + 41 a + 27\right)\cdot 53^{2} + \left(14 a^{2} + 40 a + 11\right)\cdot 53^{3} + \left(43 a^{2} + 28 a + 51\right)\cdot 53^{4} + \left(43 a^{2} + 41 a + 16\right)\cdot 53^{5} + \left(9 a^{2} + 42 a + 37\right)\cdot 53^{6} + \left(21 a^{2} + 32 a + 24\right)\cdot 53^{7} + \left(5 a + 18\right)\cdot 53^{8} + \left(2 a^{2} + 4 a + 39\right)\cdot 53^{9} + \left(47 a^{2} + 23 a + 5\right)\cdot 53^{10} +O\left(53^{ 11 }\right)$
$r_{ 8 }$ $=$ $ 8 a^{2} + 47 a + 34 + \left(18 a^{2} + 48 a + 18\right)\cdot 53 + \left(42 a^{2} + 28 a + 49\right)\cdot 53^{2} + \left(7 a^{2} + 36 a + 50\right)\cdot 53^{3} + \left(47 a^{2} + 41 a + 5\right)\cdot 53^{4} + \left(28 a^{2} + 37 a + 40\right)\cdot 53^{5} + \left(2 a^{2} + 27 a + 22\right)\cdot 53^{6} + \left(5 a^{2} + 7 a + 45\right)\cdot 53^{7} + \left(36 a^{2} + 10 a + 36\right)\cdot 53^{8} + \left(9 a^{2} + 27 a + 1\right)\cdot 53^{9} + \left(15 a^{2} + 50 a + 48\right)\cdot 53^{10} +O\left(53^{ 11 }\right)$
$r_{ 9 }$ $=$ $ 38 + 51\cdot 53 + 29\cdot 53^{2} + 18\cdot 53^{3} + 20\cdot 53^{4} + 34\cdot 53^{5} + 37\cdot 53^{6} + 19\cdot 53^{7} + 34\cdot 53^{8} + 52\cdot 53^{9} + 17\cdot 53^{10} +O\left(53^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,9,5,8,6,4,7,3,2)$
$(2,4,5)(3,9,6)$
$(1,8,7)(2,4,5)$
$(1,5)(2,8)(3,6)(4,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$6$
$9$$2$$(1,5)(2,8)(3,6)(4,7)$$0$
$2$$3$$(1,8,7)(2,5,4)(3,9,6)$$-3$
$3$$3$$(2,4,5)(3,9,6)$$0$
$3$$3$$(2,5,4)(3,6,9)$$0$
$9$$6$$(1,2,8,4,7,5)(6,9)$$0$
$9$$6$$(1,5,7,4,8,2)(6,9)$$0$
$6$$9$$(1,9,5,8,6,4,7,3,2)$$0$
$6$$9$$(1,6,5,8,3,4,7,9,2)$$0$
$6$$9$$(1,5,3,7,2,6,8,4,9)$$0$
The blue line marks the conjugacy class containing complex conjugation.