Properties

Label 6.5e4_887e2.7t5.1
Dimension 6
Group $\GL(3,2)$
Conductor $ 5^{4} \cdot 887^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$\GL(3,2)$
Conductor:$491730625= 5^{4} \cdot 887^{2} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - x^{5} - 15 x^{4} - 11 x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\GL(3,2)$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{3} + 2 x + 9 $
Roots:
$r_{ 1 }$ $=$ $ a^{2} + 5 a + 7 + \left(7 a^{2} + a + 7\right)\cdot 11 + \left(4 a^{2} + a + 5\right)\cdot 11^{2} + \left(5 a^{2} + 10 a + 7\right)\cdot 11^{3} + \left(10 a^{2} + 9 a + 2\right)\cdot 11^{4} + \left(8 a^{2} + 6 a + 8\right)\cdot 11^{5} + \left(8 a^{2} + 5 a + 10\right)\cdot 11^{6} + \left(10 a^{2} + 3 a + 3\right)\cdot 11^{7} +O\left(11^{ 8 }\right)$
$r_{ 2 }$ $=$ $ a^{2} + 5 a + 9 + \left(5 a^{2} + 5 a + 4\right)\cdot 11 + \left(9 a^{2} + 8 a + 1\right)\cdot 11^{2} + \left(3 a + 10\right)\cdot 11^{3} + \left(8 a^{2} + 4 a\right)\cdot 11^{4} + \left(10 a^{2} + 2 a\right)\cdot 11^{5} + \left(9 a^{2} + 6 a + 8\right)\cdot 11^{6} + \left(10 a^{2} + 10 a + 7\right)\cdot 11^{7} +O\left(11^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 3 a^{2} + 2 a + 8 + \left(9 a^{2} + a + 6\right)\cdot 11 + \left(a^{2} + 7 a + 9\right)\cdot 11^{2} + \left(5 a^{2} + 4 a + 4\right)\cdot 11^{3} + \left(9 a^{2} + 5 a + 6\right)\cdot 11^{4} + \left(4 a^{2} + 8 a + 10\right)\cdot 11^{5} + \left(10 a^{2} + 2 a + 4\right)\cdot 11^{6} + \left(a^{2} + 6 a + 10\right)\cdot 11^{7} +O\left(11^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 3 a^{2} + 2 a + 6 + \left(a^{2} + 2 a + 3\right)\cdot 11 + \left(a^{2} + 8\right)\cdot 11^{2} + \left(2 a^{2} + 10 a + 6\right)\cdot 11^{3} + \left(8 a^{2} + a + 10\right)\cdot 11^{4} + \left(6 a^{2} + 2 a + 8\right)\cdot 11^{5} + \left(3 a^{2} + 8 a + 3\right)\cdot 11^{6} + \left(8 a^{2} + 4 a + 4\right)\cdot 11^{7} +O\left(11^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 5 + 2\cdot 11^{2} + 5\cdot 11^{3} + 8\cdot 11^{4} + 9\cdot 11^{5} + 7\cdot 11^{6} + 7\cdot 11^{7} +O\left(11^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 7 a^{2} + 4 a + 4 + \left(2 a^{2} + 7 a + 5\right)\cdot 11 + \left(5 a^{2} + 9 a + 6\right)\cdot 11^{2} + \left(3 a^{2} + a + 8\right)\cdot 11^{3} + \left(3 a^{2} + 10 a + 7\right)\cdot 11^{4} + \left(6 a^{2} + a + 4\right)\cdot 11^{5} + \left(9 a^{2} + 8 a + 4\right)\cdot 11^{6} + \left(2 a^{2} + 2 a + 4\right)\cdot 11^{7} +O\left(11^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 7 a^{2} + 4 a + 6 + \left(7 a^{2} + 4 a + 4\right)\cdot 11 + \left(10 a^{2} + 6 a + 10\right)\cdot 11^{2} + \left(4 a^{2} + 2 a\right)\cdot 11^{3} + \left(4 a^{2} + a + 7\right)\cdot 11^{4} + \left(6 a^{2} + 1\right)\cdot 11^{5} + \left(a^{2} + 2 a + 4\right)\cdot 11^{6} + \left(9 a^{2} + 5 a + 5\right)\cdot 11^{7} +O\left(11^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,4,3)(5,6)$
$(1,7)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$21$ $2$ $(1,4)(2,3)$ $2$
$56$ $3$ $(1,4,6)(2,3,7)$ $0$
$42$ $4$ $(1,2,4,3)(5,6)$ $0$
$24$ $7$ $(1,2,4,5,6,3,7)$ $-1$
$24$ $7$ $(1,5,7,4,3,2,6)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.