Properties

Label 6.5e3_7e4_47e4.20t35.2
Dimension 6
Group $\PGL(2,5)$
Conductor $ 5^{3} \cdot 7^{4} \cdot 47^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$\PGL(2,5)$
Conductor:$1464514260125= 5^{3} \cdot 7^{4} \cdot 47^{4} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{4} - 2 x^{3} + 11 x^{2} - 7 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T35
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 109 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 109 }$: $ x^{2} + 108 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 95 a + 44 + \left(53 a + 46\right)\cdot 109 + \left(62 a + 63\right)\cdot 109^{2} + \left(26 a + 76\right)\cdot 109^{3} + \left(37 a + 96\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 14 a + 30 + \left(55 a + 5\right)\cdot 109 + \left(46 a + 72\right)\cdot 109^{2} + \left(82 a + 40\right)\cdot 109^{3} + \left(71 a + 107\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 34 + 3\cdot 109 + 35\cdot 109^{2} + 36\cdot 109^{3} + 95\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 48 + 21\cdot 109 + 68\cdot 109^{2} + 81\cdot 109^{3} + 65\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 59 a + 56 + \left(97 a + 51\right)\cdot 109 + \left(a + 37\right)\cdot 109^{2} + \left(64 a + 69\right)\cdot 109^{3} + \left(17 a + 58\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 50 a + 6 + \left(11 a + 90\right)\cdot 109 + \left(107 a + 50\right)\cdot 109^{2} + \left(44 a + 22\right)\cdot 109^{3} + \left(91 a + 12\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6)(2,5)(3,4)$
$(1,3,4,5,6,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$10$ $2$ $(1,6)(2,5)(3,4)$ $0$
$15$ $2$ $(1,2)(3,4)$ $-2$
$20$ $3$ $(1,4,6)(2,3,5)$ $0$
$30$ $4$ $(1,3,2,4)$ $0$
$24$ $5$ $(1,5,6,2,4)$ $1$
$20$ $6$ $(1,3,4,5,6,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.