Properties

Label 6.5e3_139e2.8t42.1
Dimension 6
Group $A_4\wr C_2$
Conductor $ 5^{3} \cdot 139^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$A_4\wr C_2$
Conductor:$2415125= 5^{3} \cdot 139^{2} $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 2 x^{4} - 2 x^{3} + 2 x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_4\wr C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 42.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{3} + 2 x + 27 $
Roots:
$r_{ 1 }$ $=$ $ 12 a^{2} + 22 a + 13 + \left(25 a^{2} + 24 a + 12\right)\cdot 29 + \left(26 a + 6\right)\cdot 29^{2} + \left(24 a^{2} + 24 a + 17\right)\cdot 29^{3} + \left(22 a + 26\right)\cdot 29^{4} + \left(20 a^{2} + 19 a + 8\right)\cdot 29^{5} + \left(26 a^{2} + 3 a + 11\right)\cdot 29^{6} + \left(15 a^{2} + 16 a + 21\right)\cdot 29^{7} + \left(2 a^{2} + a + 27\right)\cdot 29^{8} + \left(24 a^{2} + 22 a + 12\right)\cdot 29^{9} + \left(16 a^{2} + 28 a + 20\right)\cdot 29^{10} + \left(10 a^{2} + 17 a + 21\right)\cdot 29^{11} + \left(19 a^{2} + 6 a + 8\right)\cdot 29^{12} + \left(27 a^{2} + 5 a + 1\right)\cdot 29^{13} + \left(27 a^{2} + 6 a + 21\right)\cdot 29^{14} + \left(14 a^{2} + 7 a + 8\right)\cdot 29^{15} + \left(6 a^{2} + 26 a + 1\right)\cdot 29^{16} + \left(8 a^{2} + 22 a + 26\right)\cdot 29^{17} + \left(20 a^{2} + 12 a + 12\right)\cdot 29^{18} + \left(13 a^{2} + 20 a + 16\right)\cdot 29^{19} + \left(12 a^{2} + 16 a + 12\right)\cdot 29^{20} + \left(12 a^{2} + 26 a + 26\right)\cdot 29^{21} + \left(6 a^{2} + 20 a + 8\right)\cdot 29^{22} + \left(27 a^{2} + 24 a\right)\cdot 29^{23} + \left(12 a^{2} + 5 a + 24\right)\cdot 29^{24} + \left(10 a^{2} + 25 a + 27\right)\cdot 29^{25} + \left(11 a^{2} + 21 a + 16\right)\cdot 29^{26} + \left(20 a^{2} + 8 a + 6\right)\cdot 29^{27} + \left(28 a^{2} + 26 a + 20\right)\cdot 29^{28} + \left(11 a^{2} + 23 a + 11\right)\cdot 29^{29} + \left(16 a^{2} + 16 a + 12\right)\cdot 29^{30} + \left(19 a^{2} + 12 a + 1\right)\cdot 29^{31} + \left(23 a^{2} + 17 a + 5\right)\cdot 29^{32} + \left(25 a^{2} + 11 a + 18\right)\cdot 29^{33} + \left(a^{2} + 22 a + 25\right)\cdot 29^{34} + \left(11 a^{2} + 19 a + 14\right)\cdot 29^{35} + \left(16 a^{2} + 26 a + 23\right)\cdot 29^{36} + \left(a^{2} + 17 a + 25\right)\cdot 29^{37} + \left(20 a^{2} + 7 a + 5\right)\cdot 29^{38} + \left(20 a^{2} + 4 a + 27\right)\cdot 29^{39} + \left(5 a^{2} + 5 a + 8\right)\cdot 29^{40} + \left(2 a^{2} + 18 a + 4\right)\cdot 29^{41} +O\left(29^{ 42 }\right)$
$r_{ 2 }$ $=$ $ 4 + 14\cdot 29 + 8\cdot 29^{2} + 16\cdot 29^{3} + 24\cdot 29^{4} + 22\cdot 29^{5} + 15\cdot 29^{6} + 28\cdot 29^{7} + 6\cdot 29^{8} + 19\cdot 29^{9} + 29^{10} + 12\cdot 29^{11} + 28\cdot 29^{12} + 6\cdot 29^{13} + 19\cdot 29^{14} + 23\cdot 29^{15} + 9\cdot 29^{16} + 13\cdot 29^{17} + 17\cdot 29^{18} + 6\cdot 29^{19} + 11\cdot 29^{20} + 27\cdot 29^{21} + 23\cdot 29^{22} + 17\cdot 29^{23} + 24\cdot 29^{24} + 6\cdot 29^{25} + 23\cdot 29^{26} + 4\cdot 29^{27} + 23\cdot 29^{28} + 22\cdot 29^{29} + 23\cdot 29^{30} + 3\cdot 29^{31} + 2\cdot 29^{32} + 17\cdot 29^{33} + 29^{34} + 22\cdot 29^{35} + 19\cdot 29^{36} + 12\cdot 29^{37} + 5\cdot 29^{38} + 6\cdot 29^{39} + 26\cdot 29^{41} +O\left(29^{ 42 }\right)$
$r_{ 3 }$ $=$ $ 5 a^{2} + 22 a + 23 + \left(14 a^{2} + 28 a + 16\right)\cdot 29 + \left(15 a^{2} + 24 a + 6\right)\cdot 29^{2} + \left(21 a^{2} + 4 a + 4\right)\cdot 29^{3} + \left(16 a^{2} + 26 a + 9\right)\cdot 29^{4} + \left(25 a^{2} + 12 a + 16\right)\cdot 29^{5} + \left(23 a^{2} + 8 a + 7\right)\cdot 29^{6} + \left(19 a^{2} + 13 a + 7\right)\cdot 29^{7} + \left(8 a^{2} + 27 a + 26\right)\cdot 29^{8} + \left(22 a^{2} + 26 a\right)\cdot 29^{9} + \left(a^{2} + 19 a + 10\right)\cdot 29^{10} + \left(11 a^{2} + 4 a + 22\right)\cdot 29^{11} + \left(22 a^{2} + 19 a + 12\right)\cdot 29^{12} + \left(a^{2} + 10 a + 5\right)\cdot 29^{13} + \left(25 a^{2} + 14 a + 17\right)\cdot 29^{14} + \left(11 a^{2} + 19 a + 4\right)\cdot 29^{15} + \left(21 a^{2} + 27 a + 21\right)\cdot 29^{16} + \left(28 a^{2} + 7 a + 14\right)\cdot 29^{17} + \left(5 a^{2} + 12 a + 3\right)\cdot 29^{18} + \left(4 a^{2} + 25 a + 23\right)\cdot 29^{19} + \left(2 a^{2} + 17 a + 27\right)\cdot 29^{20} + \left(18 a^{2} + 25 a + 4\right)\cdot 29^{21} + \left(10 a^{2} + 6 a + 24\right)\cdot 29^{22} + \left(9 a^{2} + 17 a + 24\right)\cdot 29^{23} + \left(22 a^{2} + 27 a + 26\right)\cdot 29^{24} + \left(8 a^{2} + 23 a + 15\right)\cdot 29^{25} + \left(23 a^{2} + 23 a + 13\right)\cdot 29^{26} + \left(21 a^{2} + 19 a + 8\right)\cdot 29^{27} + \left(20 a^{2} + 8 a + 19\right)\cdot 29^{28} + 25\cdot 29^{29} + \left(16 a^{2} + 9 a + 11\right)\cdot 29^{30} + \left(5 a^{2} + 8 a + 21\right)\cdot 29^{31} + \left(12 a^{2} + 15 a + 18\right)\cdot 29^{32} + \left(17 a^{2} + 23 a + 16\right)\cdot 29^{33} + \left(a^{2} + 16 a + 15\right)\cdot 29^{34} + \left(a^{2} + 26 a + 1\right)\cdot 29^{35} + \left(21 a^{2} + 20 a + 20\right)\cdot 29^{36} + \left(12 a^{2} + 5 a + 11\right)\cdot 29^{37} + \left(18 a^{2} + 18 a + 13\right)\cdot 29^{38} + \left(9 a^{2} + 18 a + 12\right)\cdot 29^{39} + \left(7 a^{2} + 15 a + 1\right)\cdot 29^{40} + \left(23 a^{2} + 20 a + 13\right)\cdot 29^{41} +O\left(29^{ 42 }\right)$
$r_{ 4 }$ $=$ $ 3 + 6\cdot 29 + 17\cdot 29^{2} + 27\cdot 29^{3} + 8\cdot 29^{4} + 29^{5} + 8\cdot 29^{6} + 11\cdot 29^{7} + 4\cdot 29^{8} + 11\cdot 29^{9} + 17\cdot 29^{10} + 16\cdot 29^{11} + 17\cdot 29^{12} + 23\cdot 29^{13} + 29^{14} + 28\cdot 29^{16} + 17\cdot 29^{17} + 28\cdot 29^{18} + 13\cdot 29^{19} + 22\cdot 29^{20} + 4\cdot 29^{21} + 3\cdot 29^{22} + 7\cdot 29^{23} + 29^{24} + 23\cdot 29^{25} + 8\cdot 29^{26} + 16\cdot 29^{27} + 28\cdot 29^{28} + 20\cdot 29^{29} + 19\cdot 29^{30} + 21\cdot 29^{31} + 20\cdot 29^{32} + 23\cdot 29^{33} + 8\cdot 29^{34} + 8\cdot 29^{35} + 10\cdot 29^{36} + 19\cdot 29^{37} + 26\cdot 29^{38} + 5\cdot 29^{39} + 4\cdot 29^{40} + 29^{41} +O\left(29^{ 42 }\right)$
$r_{ 5 }$ $=$ $ 26 a^{2} + 14 a + 26 + \left(6 a^{2} + 28 a + 23\right)\cdot 29 + \left(13 a^{2} + 16 a + 3\right)\cdot 29^{2} + \left(15 a^{2} + 20 a + 11\right)\cdot 29^{3} + \left(15 a^{2} + 24 a + 3\right)\cdot 29^{4} + \left(20 a^{2} + 6 a + 8\right)\cdot 29^{5} + \left(26 a^{2} + 13\right)\cdot 29^{6} + \left(2 a^{2} + 22 a + 19\right)\cdot 29^{7} + \left(19 a^{2} + 2 a + 16\right)\cdot 29^{8} + \left(24 a^{2} + 16 a + 22\right)\cdot 29^{9} + \left(8 a^{2} + 14 a + 26\right)\cdot 29^{10} + \left(8 a^{2} + 25 a + 22\right)\cdot 29^{11} + \left(6 a^{2} + 5 a + 19\right)\cdot 29^{12} + \left(13 a^{2} + 19 a + 23\right)\cdot 29^{13} + \left(6 a^{2} + 10 a + 17\right)\cdot 29^{14} + \left(10 a^{2} + 8 a + 26\right)\cdot 29^{15} + \left(a^{2} + 11 a + 15\right)\cdot 29^{16} + \left(2 a^{2} + 9 a + 25\right)\cdot 29^{17} + \left(22 a^{2} + 23 a + 8\right)\cdot 29^{18} + \left(5 a^{2} + 21 a + 12\right)\cdot 29^{19} + \left(18 a^{2} + 26 a + 7\right)\cdot 29^{20} + \left(18 a^{2} + 25 a + 4\right)\cdot 29^{21} + \left(10 a^{2} + 28 a + 24\right)\cdot 29^{22} + \left(26 a^{2} + 19 a + 4\right)\cdot 29^{23} + \left(14 a^{2} + 10 a + 14\right)\cdot 29^{24} + \left(25 a^{2} + 23 a\right)\cdot 29^{25} + \left(8 a + 8\right)\cdot 29^{26} + \left(11 a^{2} + 21 a + 28\right)\cdot 29^{27} + \left(8 a^{2} + 22 a + 11\right)\cdot 29^{28} + \left(11 a^{2} + 28 a + 14\right)\cdot 29^{29} + \left(9 a^{2} + 7\right)\cdot 29^{30} + \left(15 a^{2} + 28 a + 17\right)\cdot 29^{31} + \left(6 a^{2} + 14 a + 27\right)\cdot 29^{32} + \left(3 a^{2} + 18 a + 6\right)\cdot 29^{33} + \left(25 a^{2} + 16 a + 26\right)\cdot 29^{34} + \left(5 a^{2} + 9 a + 16\right)\cdot 29^{35} + \left(19 a^{2} + 12 a + 23\right)\cdot 29^{36} + \left(24 a^{2} + 28 a + 17\right)\cdot 29^{37} + \left(28 a^{2} + 12 a + 19\right)\cdot 29^{38} + \left(26 a^{2} + 25 a + 22\right)\cdot 29^{39} + \left(23 a^{2} + 13 a + 9\right)\cdot 29^{40} + \left(17 a^{2} + 2 a + 13\right)\cdot 29^{41} +O\left(29^{ 42 }\right)$
$r_{ 6 }$ $=$ $ 5 a^{2} + 6 a + 27 + \left(28 a^{2} + 28 a + 3\right)\cdot 29 + \left(23 a + 26\right)\cdot 29^{2} + \left(28 a^{2} + 8 a + 27\right)\cdot 29^{3} + \left(22 a^{2} + 24 a + 22\right)\cdot 29^{4} + \left(25 a^{2} + 28 a + 24\right)\cdot 29^{5} + \left(17 a^{2} + 22 a + 20\right)\cdot 29^{6} + \left(23 a^{2} + 8 a + 27\right)\cdot 29^{7} + \left(10 a^{2} + 16 a + 24\right)\cdot 29^{8} + \left(7 a^{2} + 21 a + 18\right)\cdot 29^{9} + \left(22 a^{2} + 4 a + 15\right)\cdot 29^{10} + \left(26 a^{2} + 22 a + 18\right)\cdot 29^{11} + \left(18 a^{2} + 19 a + 7\right)\cdot 29^{12} + \left(7 a^{2} + 22 a + 16\right)\cdot 29^{13} + \left(11 a^{2} + 22 a + 14\right)\cdot 29^{14} + \left(2 a^{2} + 14 a + 6\right)\cdot 29^{15} + \left(13 a^{2} + a + 12\right)\cdot 29^{16} + \left(7 a^{2} + 21 a + 13\right)\cdot 29^{17} + \left(8 a^{2} + 10 a + 19\right)\cdot 29^{18} + \left(23 a^{2} + 4 a + 6\right)\cdot 29^{19} + \left(23 a^{2} + 11 a + 5\right)\cdot 29^{20} + \left(a^{2} + 16 a + 1\right)\cdot 29^{21} + \left(4 a^{2} + 6 a + 25\right)\cdot 29^{22} + \left(2 a^{2} + 28 a + 20\right)\cdot 29^{23} + \left(6 a^{2} + 21\right)\cdot 29^{24} + \left(27 a^{2} + 19 a + 2\right)\cdot 29^{25} + \left(2 a^{2} + 6 a + 1\right)\cdot 29^{26} + \left(9 a^{2} + 4 a + 16\right)\cdot 29^{27} + \left(17 a^{2} + 19 a + 4\right)\cdot 29^{28} + \left(11 a^{2} + 11 a + 5\right)\cdot 29^{29} + \left(25 a^{2} + 5 a + 19\right)\cdot 29^{30} + \left(11 a^{2} + 12 a + 12\right)\cdot 29^{31} + \left(27 a^{2} + 15 a + 26\right)\cdot 29^{32} + \left(8 a^{2} + 18 a + 4\right)\cdot 29^{33} + \left(13 a^{2} + 25 a + 20\right)\cdot 29^{34} + \left(28 a^{2} + 10 a + 27\right)\cdot 29^{35} + \left(14 a^{2} + 2 a + 17\right)\cdot 29^{36} + \left(13 a + 14\right)\cdot 29^{37} + \left(24 a^{2} + 24 a + 3\right)\cdot 29^{38} + \left(2 a^{2} + 5 a\right)\cdot 29^{39} + \left(3 a^{2} + 24 a + 11\right)\cdot 29^{40} + \left(22 a^{2} + 22 a + 9\right)\cdot 29^{41} +O\left(29^{ 42 }\right)$
$r_{ 7 }$ $=$ $ 27 a^{2} + 9 a + 8 + \left(22 a^{2} + a + 16\right)\cdot 29 + \left(14 a^{2} + 17 a + 15\right)\cdot 29^{2} + \left(14 a^{2} + 28 a + 19\right)\cdot 29^{3} + \left(19 a^{2} + 8 a + 8\right)\cdot 29^{4} + \left(11 a^{2} + 22 a + 25\right)\cdot 29^{5} + \left(13 a^{2} + 5 a + 14\right)\cdot 29^{6} + \left(2 a^{2} + 27 a + 28\right)\cdot 29^{7} + \left(28 a^{2} + 9 a + 18\right)\cdot 29^{8} + \left(25 a^{2} + 20 a + 14\right)\cdot 29^{9} + \left(26 a^{2} + 9 a + 2\right)\cdot 29^{10} + \left(22 a^{2} + 10 a + 23\right)\cdot 29^{11} + \left(3 a^{2} + 3 a + 6\right)\cdot 29^{12} + \left(8 a^{2} + 16 a + 7\right)\cdot 29^{13} + \left(11 a^{2} + 24 a + 24\right)\cdot 29^{14} + \left(16 a^{2} + 5 a + 5\right)\cdot 29^{15} + \left(14 a^{2} + 16 a + 14\right)\cdot 29^{16} + \left(19 a^{2} + 27 a\right)\cdot 29^{17} + \left(27 a^{2} + 23 a + 26\right)\cdot 29^{18} + \left(28 a^{2} + 2 a + 23\right)\cdot 29^{19} + \left(15 a^{2} + 20 a + 23\right)\cdot 29^{20} + \left(8 a^{2} + 15 a + 19\right)\cdot 29^{21} + \left(14 a^{2} + 22 a + 9\right)\cdot 29^{22} + \left(9 a + 28\right)\cdot 29^{23} + \left(8 a^{2} + 17 a + 4\right)\cdot 29^{24} + \left(5 a^{2} + 15 a + 12\right)\cdot 29^{25} + \left(25 a^{2} + 13 a + 11\right)\cdot 29^{26} + \left(8 a^{2} + 3 a + 25\right)\cdot 29^{27} + \left(3 a^{2} + 16 a + 14\right)\cdot 29^{28} + \left(6 a^{2} + 17 a + 7\right)\cdot 29^{29} + \left(23 a^{2} + 22 a + 16\right)\cdot 29^{30} + \left(a^{2} + 17 a + 18\right)\cdot 29^{31} + \left(24 a^{2} + 27 a + 2\right)\cdot 29^{32} + \left(16 a^{2} + 20 a + 25\right)\cdot 29^{33} + \left(19 a^{2} + 15 a + 18\right)\cdot 29^{34} + \left(23 a^{2} + 8 a + 11\right)\cdot 29^{35} + \left(23 a^{2} + 14 a + 10\right)\cdot 29^{36} + \left(3 a^{2} + 16 a + 9\right)\cdot 29^{37} + \left(5 a^{2} + 20 a + 7\right)\cdot 29^{38} + \left(28 a^{2} + 26 a + 24\right)\cdot 29^{39} + \left(a^{2} + 19 a + 28\right)\cdot 29^{40} + \left(18 a^{2} + 3 a + 3\right)\cdot 29^{41} +O\left(29^{ 42 }\right)$
$r_{ 8 }$ $=$ $ 12 a^{2} + 14 a + 13 + \left(18 a^{2} + 4 a + 22\right)\cdot 29 + \left(12 a^{2} + 6 a + 2\right)\cdot 29^{2} + \left(12 a^{2} + 28 a + 21\right)\cdot 29^{3} + \left(11 a^{2} + 8 a + 11\right)\cdot 29^{4} + \left(12 a^{2} + 25 a + 8\right)\cdot 29^{5} + \left(7 a^{2} + 16 a + 24\right)\cdot 29^{6} + \left(22 a^{2} + 28 a\right)\cdot 29^{7} + \left(17 a^{2} + 28 a + 19\right)\cdot 29^{8} + \left(11 a^{2} + 8 a + 15\right)\cdot 29^{9} + \left(10 a^{2} + 9 a + 21\right)\cdot 29^{10} + \left(7 a^{2} + 6 a + 7\right)\cdot 29^{11} + \left(16 a^{2} + 3 a + 14\right)\cdot 29^{12} + \left(28 a^{2} + 13 a + 2\right)\cdot 29^{13} + \left(4 a^{2} + 8 a\right)\cdot 29^{14} + \left(2 a^{2} + 2 a + 11\right)\cdot 29^{15} + \left(a^{2} + 4 a + 13\right)\cdot 29^{16} + \left(21 a^{2} + 27 a + 4\right)\cdot 29^{17} + \left(2 a^{2} + 3 a + 28\right)\cdot 29^{18} + \left(11 a^{2} + 12 a + 12\right)\cdot 29^{19} + \left(14 a^{2} + 23 a + 5\right)\cdot 29^{20} + \left(27 a^{2} + 5 a + 27\right)\cdot 29^{21} + \left(11 a^{2} + a + 25\right)\cdot 29^{22} + \left(21 a^{2} + 16 a + 11\right)\cdot 29^{23} + \left(22 a^{2} + 24 a + 27\right)\cdot 29^{24} + \left(9 a^{2} + 8 a + 26\right)\cdot 29^{25} + \left(23 a^{2} + 12 a + 3\right)\cdot 29^{26} + \left(15 a^{2} + 10\right)\cdot 29^{27} + \left(8 a^{2} + 23 a + 22\right)\cdot 29^{28} + \left(16 a^{2} + 4 a + 7\right)\cdot 29^{29} + \left(25 a^{2} + 3 a + 5\right)\cdot 29^{30} + \left(3 a^{2} + 8 a + 19\right)\cdot 29^{31} + \left(22 a^{2} + 25 a + 12\right)\cdot 29^{32} + \left(14 a^{2} + 22 a + 3\right)\cdot 29^{33} + \left(25 a^{2} + 18 a + 28\right)\cdot 29^{34} + \left(16 a^{2} + 11 a + 12\right)\cdot 29^{35} + \left(20 a^{2} + 10 a + 19\right)\cdot 29^{36} + \left(14 a^{2} + 5 a + 4\right)\cdot 29^{37} + \left(19 a^{2} + 3 a + 5\right)\cdot 29^{38} + \left(27 a^{2} + 6 a + 17\right)\cdot 29^{39} + \left(15 a^{2} + 8 a + 22\right)\cdot 29^{40} + \left(3 a^{2} + 19 a + 15\right)\cdot 29^{41} +O\left(29^{ 42 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,8)$
$(4,6,7)$
$(5,6,7)$
$(1,4)(2,5)(3,6)(7,8)$
$(1,2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$6$ $2$ $(1,2)(3,8)$ $2$
$9$ $2$ $(1,2)(3,8)(4,7)(5,6)$ $-2$
$12$ $2$ $(1,4)(2,5)(3,6)(7,8)$ $0$
$8$ $3$ $(4,6,7)$ $3$
$8$ $3$ $(4,7,6)$ $3$
$16$ $3$ $(1,3,8)(4,6,7)$ $0$
$16$ $3$ $(1,8,3)(4,7,6)$ $0$
$32$ $3$ $(1,2,3)(4,7,6)$ $0$
$36$ $4$ $(1,5,2,6)(3,4,8,7)$ $0$
$24$ $6$ $(1,2)(3,8)(4,6,7)$ $-1$
$24$ $6$ $(1,2)(3,8)(4,7,6)$ $-1$
$48$ $6$ $(1,4,3,6,8,7)(2,5)$ $0$
$48$ $6$ $(1,7,8,6,3,4)(2,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.