Properties

Label 6.59e5_101e5_1033e5.14t46.1c1
Dimension 6
Group $S_7$
Conductor $ 59^{5} \cdot 101^{5} \cdot 1033^{5}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_7$
Conductor:$8838295846581806088221256783963007= 59^{5} \cdot 101^{5} \cdot 1033^{5} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{5} - 2 x^{3} + 3 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 14T46
Parity: Odd
Determinant: 1.59_101_1033.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 23 a + 40 + \left(35 a + 26\right)\cdot 43 + \left(3 a + 2\right)\cdot 43^{2} + \left(9 a + 1\right)\cdot 43^{3} + \left(10 a + 25\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 30 a + 33 + \left(35 a + 4\right)\cdot 43 + \left(32 a + 18\right)\cdot 43^{2} + \left(21 a + 33\right)\cdot 43^{3} + \left(33 a + 5\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 25 a + 42 + \left(12 a + 32\right)\cdot 43 + \left(a + 11\right)\cdot 43^{2} + \left(2 a + 19\right)\cdot 43^{3} + \left(32 a + 20\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 20 a + 20 + \left(7 a + 39\right)\cdot 43 + \left(39 a + 13\right)\cdot 43^{2} + \left(33 a + 6\right)\cdot 43^{3} + \left(32 a + 26\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 36 + 36\cdot 43 + 23\cdot 43^{2} + 26\cdot 43^{3} + 26\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 18 a + 24 + \left(30 a + 20\right)\cdot 43 + 41 a\cdot 43^{2} + \left(40 a + 20\right)\cdot 43^{3} + \left(10 a + 7\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 13 a + 20 + \left(7 a + 10\right)\cdot 43 + \left(10 a + 15\right)\cdot 43^{2} + \left(21 a + 22\right)\cdot 43^{3} + \left(9 a + 17\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$6$
$21$$2$$(1,2)$$-4$
$105$$2$$(1,2)(3,4)(5,6)$$0$
$105$$2$$(1,2)(3,4)$$2$
$70$$3$$(1,2,3)$$3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$-2$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$1$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$-1$
$504$$10$$(1,2,3,4,5)(6,7)$$1$
$420$$12$$(1,2,3,4)(5,6,7)$$1$
The blue line marks the conjugacy class containing complex conjugation.