# Properties

 Label 6.5737e2.7t5.1c1 Dimension 6 Group $\GL(3,2)$ Conductor $5737^{2}$ Root number 1 Frobenius-Schur indicator 1

# Related objects

## Basic invariants

 Dimension: $6$ Group: $\GL(3,2)$ Conductor: $32913169= 5737^{2}$ Artin number field: Splitting field of $f= x^{7} - x^{6} - 2 x^{4} - 9 x^{3} + 2 x^{2} - 3 x - 1$ over $\Q$ Size of Galois orbit: 1 Smallest containing permutation representation: $\GL(3,2)$ Parity: Even Determinant: 1.1.1t1.1c1

## Galois action

### Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $x^{3} + 2 x + 9$
Roots:
 $r_{ 1 }$ $=$ $3 a^{2} + 7 a + 8 + \left(7 a^{2} + 3 a + 8\right)\cdot 11 + \left(9 a^{2} + a + 9\right)\cdot 11^{2} + \left(9 a + 5\right)\cdot 11^{3} + \left(3 a^{2} + 7 a + 3\right)\cdot 11^{4} + \left(2 a^{2} + a + 8\right)\cdot 11^{5} + \left(4 a^{2} + 5 a + 6\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$ $r_{ 2 }$ $=$ $7 a^{2} + 6 a + 6 + \left(7 a^{2} + 5\right)\cdot 11 + \left(5 a^{2} + 7 a + 4\right)\cdot 11^{2} + \left(4 a^{2} + 8 a + 3\right)\cdot 11^{3} + \left(2 a + 7\right)\cdot 11^{4} + \left(2 a^{2} + 4 a\right)\cdot 11^{5} + \left(9 a^{2} + a + 6\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$ $r_{ 3 }$ $=$ $3 a^{2} + a + 6 + 4 a\cdot 11 + \left(7 a^{2} + 2 a + 2\right)\cdot 11^{2} + \left(3 a^{2} + a + 9\right)\cdot 11^{3} + \left(6 a^{2} + 7 a + 2\right)\cdot 11^{4} + \left(9 a^{2} + 8 a + 4\right)\cdot 11^{5} + \left(7 a^{2} + 3 a\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$ $r_{ 4 }$ $=$ $5 + 2\cdot 11 + 9\cdot 11^{2} + 5\cdot 11^{3} + 7\cdot 11^{4} + 9\cdot 11^{5} + 4\cdot 11^{6} +O\left(11^{ 7 }\right)$ $r_{ 5 }$ $=$ $a^{2} + 9 a + 9 + \left(7 a^{2} + 6 a + 4\right)\cdot 11 + \left(6 a^{2} + 2 a + 9\right)\cdot 11^{2} + \left(5 a^{2} + 4 a + 4\right)\cdot 11^{3} + \left(7 a^{2} + 9\right)\cdot 11^{4} + \left(6 a^{2} + 5 a + 6\right)\cdot 11^{5} + \left(8 a^{2} + 4 a + 1\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$ $r_{ 6 }$ $=$ $2 a^{2} + 7 a + 1 + \left(7 a^{2} + 6 a + 6\right)\cdot 11 + \left(7 a^{2} + 3 a + 6\right)\cdot 11^{2} + \left(6 a^{2} + 8 a + 9\right)\cdot 11^{3} + \left(7 a^{2} + 3 a\right)\cdot 11^{4} + \left(2 a^{2} + 5 a + 6\right)\cdot 11^{5} + \left(9 a^{2} + a + 9\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$ $r_{ 7 }$ $=$ $6 a^{2} + 3 a + 10 + \left(3 a^{2} + 4\right)\cdot 11 + \left(7 a^{2} + 5 a + 2\right)\cdot 11^{2} + \left(a + 5\right)\cdot 11^{3} + \left(8 a^{2} + 1\right)\cdot 11^{4} + \left(9 a^{2} + 8 a + 8\right)\cdot 11^{5} + \left(4 a^{2} + 5 a + 3\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$

### Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

 Cycle notation $(1,3)(5,6)$ $(1,5,4,2)(3,7)$

### Character values on conjugacy classes

 Size Order Action on $r_1, \ldots, r_{ 7 }$ Character value $1$ $1$ $()$ $6$ $21$ $2$ $(1,3)(5,6)$ $2$ $56$ $3$ $(1,4,6)(2,5,7)$ $0$ $42$ $4$ $(1,5,4,2)(3,7)$ $0$ $24$ $7$ $(1,7,3,5,6,4,2)$ $-1$ $24$ $7$ $(1,5,2,3,4,7,6)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.