Properties

Label 6.55078981e5.14t46.1c1
Dimension 6
Group $S_7$
Conductor $ 55078981^{5}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_7$
Conductor:$506908395949773452226441636509559318901= 55078981^{5} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 7 x^{5} + 2 x^{4} + 12 x^{3} - 5 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 14T46
Parity: Even
Determinant: 1.55078981.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 73 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 73 }$: $ x^{2} + 70 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 30 a + 35 + \left(70 a + 43\right)\cdot 73 + \left(48 a + 46\right)\cdot 73^{2} + \left(12 a + 62\right)\cdot 73^{3} + \left(47 a + 59\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 4 a + 60 + \left(35 a + 31\right)\cdot 73 + \left(46 a + 45\right)\cdot 73^{2} + \left(48 a + 44\right)\cdot 73^{3} + \left(18 a + 50\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 29 + 43\cdot 73 + 66\cdot 73^{3} + 2\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 43 a + 52 + \left(2 a + 5\right)\cdot 73 + \left(24 a + 50\right)\cdot 73^{2} + \left(60 a + 51\right)\cdot 73^{3} + \left(25 a + 42\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 23 a + 61 + \left(19 a + 72\right)\cdot 73 + \left(43 a + 53\right)\cdot 73^{2} + \left(36 a + 37\right)\cdot 73^{3} + \left(69 a + 62\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 69 a + 72 + \left(37 a + 59\right)\cdot 73 + \left(26 a + 3\right)\cdot 73^{2} + \left(24 a + 71\right)\cdot 73^{3} + \left(54 a + 57\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 50 a + 57 + \left(53 a + 34\right)\cdot 73 + \left(29 a + 18\right)\cdot 73^{2} + \left(36 a + 31\right)\cdot 73^{3} + \left(3 a + 15\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$6$
$21$$2$$(1,2)$$-4$
$105$$2$$(1,2)(3,4)(5,6)$$0$
$105$$2$$(1,2)(3,4)$$2$
$70$$3$$(1,2,3)$$3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$-2$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$1$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$-1$
$504$$10$$(1,2,3,4,5)(6,7)$$1$
$420$$12$$(1,2,3,4)(5,6,7)$$1$
The blue line marks the conjugacy class containing complex conjugation.