Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 383 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 88 + 282\cdot 383 + 41\cdot 383^{2} + 170\cdot 383^{3} + 220\cdot 383^{4} +O\left(383^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 89 + 155\cdot 383 + 93\cdot 383^{2} + 241\cdot 383^{3} + 206\cdot 383^{4} +O\left(383^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 120 + 178\cdot 383 + 256\cdot 383^{2} + 144\cdot 383^{3} + 377\cdot 383^{4} +O\left(383^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 127 + 109\cdot 383 + 48\cdot 383^{2} + 292\cdot 383^{3} + 181\cdot 383^{4} +O\left(383^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 342 + 40\cdot 383 + 326\cdot 383^{2} + 300\cdot 383^{3} + 162\cdot 383^{4} +O\left(383^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$6$ |
| $10$ |
$2$ |
$(1,2)$ |
$0$ |
| $15$ |
$2$ |
$(1,2)(3,4)$ |
$-2$ |
| $20$ |
$3$ |
$(1,2,3)$ |
$0$ |
| $30$ |
$4$ |
$(1,2,3,4)$ |
$0$ |
| $24$ |
$5$ |
$(1,2,3,4,5)$ |
$1$ |
| $20$ |
$6$ |
$(1,2,3)(4,5)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.