Properties

Label 6.463e5_9689e5.14t46.1
Dimension 6
Group $S_7$
Conductor $ 463^{5} \cdot 9689^{5}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_7$
Conductor:$1816769099662320669781486134446807= 463^{5} \cdot 9689^{5} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} - x^{5} + 6 x^{4} - 2 x^{3} - 5 x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 14T46
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 139 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 139 }$: $ x^{2} + 138 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 59 a + 67 + \left(79 a + 78\right)\cdot 139 + \left(117 a + 23\right)\cdot 139^{2} + \left(53 a + 126\right)\cdot 139^{3} + \left(15 a + 101\right)\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 129 a + 91 + \left(96 a + 120\right)\cdot 139 + \left(87 a + 17\right)\cdot 139^{2} + \left(73 a + 5\right)\cdot 139^{3} + \left(78 a + 49\right)\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 79 + 51\cdot 139 + 101\cdot 139^{2} + 75\cdot 139^{3} + 137\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 80 a + 126 + \left(59 a + 98\right)\cdot 139 + \left(21 a + 61\right)\cdot 139^{2} + \left(85 a + 62\right)\cdot 139^{3} + \left(123 a + 63\right)\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 74 + 18\cdot 139 + 71\cdot 139^{2} + 56\cdot 139^{3} + 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 40 + 99\cdot 139 + 132\cdot 139^{2} + 99\cdot 139^{3} + 9\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 10 a + 81 + \left(42 a + 88\right)\cdot 139 + \left(51 a + 8\right)\cdot 139^{2} + \left(65 a + 130\right)\cdot 139^{3} + \left(60 a + 53\right)\cdot 139^{4} +O\left(139^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$21$ $2$ $(1,2)$ $-4$
$105$ $2$ $(1,2)(3,4)(5,6)$ $0$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $-2$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $-1$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $1$
The blue line marks the conjugacy class containing complex conjugation.