Basic invariants
Dimension: | $6$ |
Group: | $S_3 \wr C_3 $ |
Conductor: | \(4550424131\)\(\medspace = 11^{3} \cdot 43^{4} \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 9.3.69534993539.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | 18T197 |
Parity: | odd |
Determinant: | 1.11.2t1.a.a |
Projective image: | $S_3\wr C_3$ |
Projective stem field: | Galois closure of 9.3.69534993539.1 |
Defining polynomial
$f(x)$ | $=$ |
\( x^{9} - 3x^{7} - 4x^{6} + 3x^{5} + 8x^{4} - 10x^{3} - 4x^{2} + 9x + 4 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$:
\( x^{3} + 6x + 35 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 3 a^{2} + 15 a + 28 + \left(9 a^{2} + 9 a + 3\right)\cdot 37 + \left(12 a^{2} + 22 a + 34\right)\cdot 37^{2} + \left(26 a^{2} + 20 a + 31\right)\cdot 37^{3} + \left(22 a^{2} + 3 a + 9\right)\cdot 37^{4} + \left(34 a^{2} + 29 a + 4\right)\cdot 37^{5} + \left(14 a^{2} + 31 a\right)\cdot 37^{6} + \left(23 a^{2} + 22 a + 9\right)\cdot 37^{7} + \left(28 a^{2} + 29 a + 9\right)\cdot 37^{8} + \left(10 a^{2} + 11 a + 12\right)\cdot 37^{9} +O(37^{10})\)
|
$r_{ 2 }$ | $=$ |
\( 12 a^{2} + 13 a + 34 + \left(21 a^{2} + 5 a + 21\right)\cdot 37 + \left(5 a^{2} + 9 a + 29\right)\cdot 37^{2} + \left(36 a^{2} + 13 a + 28\right)\cdot 37^{3} + \left(22 a^{2} + 18 a + 36\right)\cdot 37^{4} + \left(24 a^{2} + 35 a + 16\right)\cdot 37^{5} + \left(23 a^{2} + 16 a + 34\right)\cdot 37^{6} + \left(12 a^{2} + 7 a + 26\right)\cdot 37^{7} + \left(30 a^{2} + 27 a + 10\right)\cdot 37^{8} + \left(35 a^{2} + 4\right)\cdot 37^{9} +O(37^{10})\)
|
$r_{ 3 }$ | $=$ |
\( 19 a^{2} + 13 a + 18 + \left(25 a^{2} + 27 a + 32\right)\cdot 37 + \left(24 a^{2} + 12 a + 9\right)\cdot 37^{2} + \left(5 a^{2} + 35 a + 23\right)\cdot 37^{3} + \left(6 a^{2} + 4 a + 17\right)\cdot 37^{4} + \left(a^{2} + 27 a + 18\right)\cdot 37^{5} + \left(12 a^{2} + 14 a + 25\right)\cdot 37^{6} + \left(24 a^{2} + 10 a + 12\right)\cdot 37^{7} + \left(21 a^{2} + 17 a + 18\right)\cdot 37^{8} + \left(14 a^{2} + 13 a + 27\right)\cdot 37^{9} +O(37^{10})\)
|
$r_{ 4 }$ | $=$ |
\( 19 a^{2} + 2 a + 25 + \left(5 a^{2} + 8 a + 32\right)\cdot 37 + \left(13 a^{2} + 33 a + 22\right)\cdot 37^{2} + \left(29 a^{2} + 8 a + 1\right)\cdot 37^{3} + \left(32 a^{2} + 17 a + 2\right)\cdot 37^{4} + \left(5 a^{2} + 17 a + 16\right)\cdot 37^{5} + \left(9 a^{2} + 17 a + 13\right)\cdot 37^{6} + \left(21 a^{2} + 14 a + 24\right)\cdot 37^{7} + \left(26 a^{2} + 28 a + 32\right)\cdot 37^{8} + \left(14 a^{2} + 3 a + 30\right)\cdot 37^{9} +O(37^{10})\)
|
$r_{ 5 }$ | $=$ |
\( 10 a^{2} + 15 a + 1 + \left(13 a^{2} + 31 a + 1\right)\cdot 37 + \left(31 a^{2} + 25 a + 22\right)\cdot 37^{2} + \left(32 a^{2} + 5 a + 24\right)\cdot 37^{3} + \left(5 a^{2} + 27 a + 11\right)\cdot 37^{4} + \left(11 a^{2} + 20 a + 1\right)\cdot 37^{5} + \left(3 a^{2} + 29 a + 22\right)\cdot 37^{6} + \left(35 a^{2} + 25 a + 26\right)\cdot 37^{7} + \left(19 a^{2} + 19 a + 36\right)\cdot 37^{8} + \left(26 a^{2} + 24 a + 16\right)\cdot 37^{9} +O(37^{10})\)
|
$r_{ 6 }$ | $=$ |
\( 6 a^{2} + 22 a + 10 + \left(10 a^{2} + 23 a + 14\right)\cdot 37 + \left(18 a^{2} + 31 a + 6\right)\cdot 37^{2} + \left(8 a^{2} + 14 a + 29\right)\cdot 37^{3} + \left(18 a^{2} + a + 17\right)\cdot 37^{4} + \left(6 a^{2} + 21 a + 18\right)\cdot 37^{5} + \left(4 a^{2} + 2 a + 30\right)\cdot 37^{6} + \left(3 a^{2} + 15 a + 25\right)\cdot 37^{7} + \left(17 a^{2} + 18 a + 31\right)\cdot 37^{8} + \left(23 a^{2} + 32 a + 28\right)\cdot 37^{9} +O(37^{10})\)
|
$r_{ 7 }$ | $=$ |
\( 15 a^{2} + 9 a + 2 + \left(2 a^{2} + 14\right)\cdot 37 + \left(2 a + 22\right)\cdot 37^{2} + \left(5 a^{2} + 18 a + 20\right)\cdot 37^{3} + \left(8 a^{2} + 28 a + 25\right)\cdot 37^{4} + \left(a^{2} + 17 a + 18\right)\cdot 37^{5} + \left(10 a^{2} + 27 a + 17\right)\cdot 37^{6} + \left(26 a^{2} + 3 a + 20\right)\cdot 37^{7} + \left(23 a^{2} + 27 a + 26\right)\cdot 37^{8} + \left(11 a^{2} + 11 a + 15\right)\cdot 37^{9} +O(37^{10})\)
|
$r_{ 8 }$ | $=$ |
\( 28 a^{2} + 36 + \left(17 a^{2} + 4 a + 18\right)\cdot 37 + \left(6 a^{2} + 20 a + 33\right)\cdot 37^{2} + \left(2 a^{2} + a + 12\right)\cdot 37^{3} + \left(33 a^{2} + 32 a + 9\right)\cdot 37^{4} + \left(32 a^{2} + 23 a + 14\right)\cdot 37^{5} + \left(17 a^{2} + 2 a + 6\right)\cdot 37^{6} + \left(10 a^{2} + 36 a + 2\right)\cdot 37^{7} + \left(28 a^{2} + 25 a + 33\right)\cdot 37^{8} + \left(2 a^{2} + 29 a + 32\right)\cdot 37^{9} +O(37^{10})\)
|
$r_{ 9 }$ | $=$ |
\( 36 a^{2} + 22 a + 31 + \left(5 a^{2} + a + 8\right)\cdot 37 + \left(36 a^{2} + 28 a + 4\right)\cdot 37^{2} + \left(a^{2} + 29 a + 12\right)\cdot 37^{3} + \left(35 a^{2} + 14 a + 17\right)\cdot 37^{4} + \left(29 a^{2} + 29 a + 2\right)\cdot 37^{5} + \left(15 a^{2} + 4 a + 35\right)\cdot 37^{6} + \left(28 a^{2} + 12 a + 36\right)\cdot 37^{7} + \left(25 a^{2} + 28 a + 22\right)\cdot 37^{8} + \left(7 a^{2} + 19 a + 15\right)\cdot 37^{9} +O(37^{10})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 9 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 9 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $6$ | |
$9$ | $2$ | $(1,6)$ | $0$ | |
$27$ | $2$ | $(1,6)(2,5)(3,4)$ | $0$ | ✓ |
$27$ | $2$ | $(1,6)(5,7)$ | $-2$ | |
$6$ | $3$ | $(3,4,9)$ | $3$ | |
$8$ | $3$ | $(1,6,8)(2,5,7)(3,4,9)$ | $-3$ | |
$12$ | $3$ | $(2,5,7)(3,4,9)$ | $0$ | |
$36$ | $3$ | $(1,2,3)(4,6,5)(7,9,8)$ | $0$ | |
$36$ | $3$ | $(1,3,2)(4,5,6)(7,8,9)$ | $0$ | |
$18$ | $6$ | $(1,6)(3,4,9)$ | $-3$ | |
$18$ | $6$ | $(1,6)(2,5,7)$ | $3$ | |
$36$ | $6$ | $(1,6)(2,5,7)(3,4,9)$ | $0$ | |
$54$ | $6$ | $(1,6)(3,4,9)(5,7)$ | $1$ | |
$108$ | $6$ | $(1,5,4,6,2,3)(7,9,8)$ | $0$ | |
$108$ | $6$ | $(1,3,2,6,4,5)(7,8,9)$ | $0$ | |
$72$ | $9$ | $(1,2,3,6,5,4,8,7,9)$ | $0$ | |
$72$ | $9$ | $(1,3,5,8,9,2,6,4,7)$ | $0$ |