Properties

Label 6.43e3_103e3.20t35.1
Dimension 6
Group $S_5$
Conductor $ 43^{3} \cdot 103^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_5$
Conductor:$86879445589= 43^{3} \cdot 103^{3} $
Artin number field: Splitting field of $f= x^{5} - x^{4} + 2 x^{3} - x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T35
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 26\cdot 29 + 9\cdot 29^{2} + 8\cdot 29^{3} + 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 16 a + 10 + \left(10 a + 13\right)\cdot 29 + 12\cdot 29^{2} + \left(13 a + 24\right)\cdot 29^{3} + \left(20 a + 18\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 13 a + 3 + \left(18 a + 21\right)\cdot 29 + \left(28 a + 3\right)\cdot 29^{2} + \left(15 a + 2\right)\cdot 29^{3} + \left(8 a + 21\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 5 + 8\cdot 29 + 15\cdot 29^{3} + 18\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 10 + 18\cdot 29 + 2\cdot 29^{2} + 8\cdot 29^{3} + 27\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$10$ $2$ $(1,2)$ $0$
$15$ $2$ $(1,2)(3,4)$ $-2$
$20$ $3$ $(1,2,3)$ $0$
$30$ $4$ $(1,2,3,4)$ $0$
$24$ $5$ $(1,2,3,4,5)$ $1$
$20$ $6$ $(1,2,3)(4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.