Properties

Label 6.43_107_233.7t7.1
Dimension 6
Group $S_7$
Conductor $ 43 \cdot 107 \cdot 233 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_7$
Conductor:$1072033= 43 \cdot 107 \cdot 233 $
Artin number field: Splitting field of $f= x^{7} - x^{5} - x^{4} - x^{3} - x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_7$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 127 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 127 }$: $ x^{2} + 126 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 39 a + 65 + \left(122 a + 66\right)\cdot 127 + \left(57 a + 110\right)\cdot 127^{2} + \left(29 a + 34\right)\cdot 127^{3} + \left(95 a + 106\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 92 + 64\cdot 127 + 32\cdot 127^{2} + 23\cdot 127^{3} + 25\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 12 + 69\cdot 127 + 125\cdot 127^{2} + 63\cdot 127^{3} + 12\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 94 a + 42 + \left(80 a + 11\right)\cdot 127 + \left(63 a + 16\right)\cdot 127^{2} + \left(7 a + 76\right)\cdot 127^{3} + \left(52 a + 104\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 33 a + 9 + \left(46 a + 125\right)\cdot 127 + \left(63 a + 125\right)\cdot 127^{2} + \left(119 a + 19\right)\cdot 127^{3} + \left(74 a + 22\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 57 + 21\cdot 127 + 51\cdot 127^{2} + 29\cdot 127^{3} + 65\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 88 a + 104 + \left(4 a + 22\right)\cdot 127 + \left(69 a + 46\right)\cdot 127^{2} + \left(97 a + 6\right)\cdot 127^{3} + \left(31 a + 45\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$21$ $2$ $(1,2)$ $4$
$105$ $2$ $(1,2)(3,4)(5,6)$ $0$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $2$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $-1$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $-1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.