Properties

Label 6.146...299.14t46.a
Dimension $6$
Group $S_7$
Conductor $1.465\times 10^{33}$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$6$
Group:$S_7$
Conductor:\(146\!\cdots\!299\)\(\medspace = 4297259^{5} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 7.5.4297259.1
Galois orbit size: $1$
Smallest permutation container: 14T46
Parity: odd
Projective image: $S_7$
Projective field: Galois closure of 7.5.4297259.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 157 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 157 }$: \( x^{2} + 152x + 5 \) Copy content Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 26 a + 149 + \left(50 a + 42\right)\cdot 157 + \left(60 a + 47\right)\cdot 157^{2} + \left(30 a + 51\right)\cdot 157^{3} + \left(114 a + 99\right)\cdot 157^{4} +O(157^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 22 + 78\cdot 157 + 104\cdot 157^{2} + 117\cdot 157^{3} + 85\cdot 157^{4} +O(157^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 63 a + 138 + \left(48 a + 98\right)\cdot 157 + \left(35 a + 102\right)\cdot 157^{2} + \left(94 a + 154\right)\cdot 157^{3} + \left(109 a + 4\right)\cdot 157^{4} +O(157^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 106 + 68\cdot 157 + 131\cdot 157^{2} + 145\cdot 157^{3} + 10\cdot 157^{4} +O(157^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 109 + 107\cdot 157 + 26\cdot 157^{2} + 53\cdot 157^{3} + 113\cdot 157^{4} +O(157^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 131 a + 122 + \left(106 a + 110\right)\cdot 157 + \left(96 a + 141\right)\cdot 157^{2} + \left(126 a + 142\right)\cdot 157^{3} + \left(42 a + 11\right)\cdot 157^{4} +O(157^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 94 a + 139 + \left(108 a + 120\right)\cdot 157 + \left(121 a + 73\right)\cdot 157^{2} + \left(62 a + 119\right)\cdot 157^{3} + \left(47 a + 144\right)\cdot 157^{4} +O(157^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$21$ $2$ $(1,2)$ $-4$
$105$ $2$ $(1,2)(3,4)(5,6)$ $0$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $-2$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $-1$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $1$
The blue line marks the conjugacy class containing complex conjugation.