Properties

Label 6.41e5_19993e5.14t46.1
Dimension 6
Group $S_7$
Conductor $ 41^{5} \cdot 19993^{5}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_7$
Conductor:$370091502471781027354664929793= 41^{5} \cdot 19993^{5} $
Artin number field: Splitting field of $f= x^{7} - 3 x^{6} + 3 x^{5} - 4 x^{3} + 3 x^{2} - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 14T46
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 107 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 107 }$: $ x^{2} + 103 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 102 a + 28 + \left(58 a + 68\right)\cdot 107 + \left(34 a + 64\right)\cdot 107^{2} + \left(4 a + 1\right)\cdot 107^{3} + \left(96 a + 6\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 5 a + 8 + \left(48 a + 95\right)\cdot 107 + \left(72 a + 36\right)\cdot 107^{2} + \left(102 a + 91\right)\cdot 107^{3} + \left(10 a + 64\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 93 a + 44 + \left(88 a + 55\right)\cdot 107 + \left(45 a + 27\right)\cdot 107^{2} + \left(83 a + 19\right)\cdot 107^{3} + \left(22 a + 59\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 57 a + 45 + \left(77 a + 30\right)\cdot 107 + \left(84 a + 69\right)\cdot 107^{2} + \left(67 a + 64\right)\cdot 107^{3} + \left(10 a + 87\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 14 a + 95 + \left(18 a + 103\right)\cdot 107 + \left(61 a + 14\right)\cdot 107^{2} + \left(23 a + 93\right)\cdot 107^{3} + \left(84 a + 66\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 45 + 5\cdot 107 + 98\cdot 107^{2} + 13\cdot 107^{3} + 81\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 50 a + 59 + \left(29 a + 69\right)\cdot 107 + \left(22 a + 9\right)\cdot 107^{2} + \left(39 a + 37\right)\cdot 107^{3} + \left(96 a + 62\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$21$ $2$ $(1,2)$ $-4$
$105$ $2$ $(1,2)(3,4)(5,6)$ $0$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $-2$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $-1$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $1$
The blue line marks the conjugacy class containing complex conjugation.