Properties

Label 6.41_25537.7t7.1
Dimension 6
Group $S_7$
Conductor $ 41 \cdot 25537 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_7$
Conductor:$1047017= 41 \cdot 25537 $
Artin number field: Splitting field of $f= x^{7} - 2 x^{5} - 2 x^{4} + x^{3} + x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_7$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 191 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 191 }$: $ x^{2} + 190 x + 19 $
Roots:
$r_{ 1 }$ $=$ $ 9 + 122\cdot 191 + 13\cdot 191^{2} + 80\cdot 191^{3} + 123\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 164 + 101\cdot 191 + 54\cdot 191^{2} + 4\cdot 191^{3} + 182\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 151 + 11\cdot 191 + 81\cdot 191^{2} + 74\cdot 191^{3} + 118\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 68 a + 76 + \left(94 a + 116\right)\cdot 191 + \left(183 a + 115\right)\cdot 191^{2} + \left(163 a + 18\right)\cdot 191^{3} + \left(126 a + 72\right)\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 179 + 102\cdot 191 + 171\cdot 191^{2} + 138\cdot 191^{3} + 69\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 123 a + 144 + \left(96 a + 142\right)\cdot 191 + \left(7 a + 13\right)\cdot 191^{2} + \left(27 a + 190\right)\cdot 191^{3} + \left(64 a + 34\right)\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 41 + 166\cdot 191 + 122\cdot 191^{2} + 66\cdot 191^{3} + 163\cdot 191^{4} +O\left(191^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$21$ $2$ $(1,2)$ $4$
$105$ $2$ $(1,2)(3,4)(5,6)$ $0$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $2$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $-1$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $-1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.