Properties

Label 6.41381e3.20t35.1c1
Dimension 6
Group $S_5$
Conductor $ 41381^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_5$
Conductor:$70860293109341= 41381^{3} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 2 x^{2} + 4 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T35
Parity: Even
Determinant: 1.41381.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 359 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 25 + 13\cdot 359 + 219\cdot 359^{2} + 48\cdot 359^{3} + 44\cdot 359^{4} +O\left(359^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 27 + 44\cdot 359 + 54\cdot 359^{2} + 88\cdot 359^{3} + 320\cdot 359^{4} +O\left(359^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 64 + 115\cdot 359 + 91\cdot 359^{2} + 142\cdot 359^{3} + 258\cdot 359^{4} +O\left(359^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 293 + 173\cdot 359 + 139\cdot 359^{2} + 62\cdot 359^{3} + 260\cdot 359^{4} +O\left(359^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 310 + 12\cdot 359 + 214\cdot 359^{2} + 17\cdot 359^{3} + 194\cdot 359^{4} +O\left(359^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$6$
$10$$2$$(1,2)$$0$
$15$$2$$(1,2)(3,4)$$-2$
$20$$3$$(1,2,3)$$0$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$1$
$20$$6$$(1,2,3)(4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.