Properties

Label 6.3e9_83e2.9t18.1c1
Dimension 6
Group $C_3^2 : D_{6} $
Conductor $ 3^{9} \cdot 83^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$C_3^2 : D_{6} $
Conductor:$135596187= 3^{9} \cdot 83^{2} $
Artin number field: Splitting field of $f= x^{9} - 2 x^{6} + 2 x^{3} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2 : D_{6} $
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 193 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 193 }$: $ x^{3} + x + 188 $
Roots:
$r_{ 1 }$ $=$ $ 33 + 42\cdot 193 + 54\cdot 193^{2} + 105\cdot 193^{3} + 29\cdot 193^{4} + 126\cdot 193^{5} + 89\cdot 193^{6} + 94\cdot 193^{7} +O\left(193^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 70 + 143\cdot 193 + 78\cdot 193^{2} + 23\cdot 193^{3} + 135\cdot 193^{4} + 188\cdot 193^{5} + 164\cdot 193^{6} + 155\cdot 193^{7} +O\left(193^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 90 + 7\cdot 193 + 60\cdot 193^{2} + 64\cdot 193^{3} + 28\cdot 193^{4} + 71\cdot 193^{5} + 131\cdot 193^{6} + 135\cdot 193^{7} +O\left(193^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 13 a^{2} + 47 a + 73 + \left(98 a^{2} + 47 a + 65\right)\cdot 193 + \left(85 a^{2} + 16 a + 121\right)\cdot 193^{2} + \left(9 a^{2} + 50 a + 70\right)\cdot 193^{3} + \left(143 a^{2} + 164 a + 95\right)\cdot 193^{4} + \left(91 a^{2} + 143 a + 125\right)\cdot 193^{5} + \left(137 a^{2} + 55 a + 91\right)\cdot 193^{6} + \left(4 a^{2} + 182 a + 67\right)\cdot 193^{7} +O\left(193^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 32 a^{2} + 8 a + 150 + \left(22 a^{2} + 6 a + 14\right)\cdot 193 + \left(143 a^{2} + 150 a + 31\right)\cdot 193^{2} + \left(86 a^{2} + 47 a + 122\right)\cdot 193^{3} + \left(108 a^{2} + 173 a + 136\right)\cdot 193^{4} + \left(4 a^{2} + 21 a + 131\right)\cdot 193^{5} + \left(155 a^{2} + 170 a + 167\right)\cdot 193^{6} + \left(161 a^{2} + 22 a + 107\right)\cdot 193^{7} +O\left(193^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 53 a^{2} + 58 a + 164 + \left(144 a^{2} + 53 a + 31\right)\cdot 193 + \left(182 a^{2} + 6 a + 186\right)\cdot 193^{2} + \left(a^{2} + 49 a + 129\right)\cdot 193^{3} + \left(6 a^{2} + 139 a + 132\right)\cdot 193^{4} + \left(10 a^{2} + 86 a + 6\right)\cdot 193^{5} + \left(113 a^{2} + 143 a + 11\right)\cdot 193^{6} + \left(93 a^{2} + 133 a + 191\right)\cdot 193^{7} +O\left(193^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 127 a^{2} + 88 a + 149 + \left(143 a^{2} + 92 a + 95\right)\cdot 193 + \left(117 a^{2} + 170 a + 78\right)\cdot 193^{2} + \left(181 a^{2} + 93 a + 185\right)\cdot 193^{3} + \left(43 a^{2} + 82 a + 157\right)\cdot 193^{4} + \left(91 a^{2} + 155 a + 60\right)\cdot 193^{5} + \left(135 a^{2} + 186 a + 90\right)\cdot 193^{6} + \left(94 a^{2} + 69 a + 127\right)\cdot 193^{7} +O\left(193^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 175 a^{2} + 92 a + 181 + \left(60 a^{2} + 117 a + 104\right)\cdot 193 + \left(89 a^{2} + 60 a + 59\right)\cdot 193^{2} + \left(49 a^{2} + 59 a + 97\right)\cdot 193^{3} + \left(187 a^{2} + 156 a + 60\right)\cdot 193^{4} + \left(168 a^{2} + 73 a + 48\right)\cdot 193^{5} + \left(108 a^{2} + 128 a + 8\right)\cdot 193^{6} + \left(65 a^{2} + 127 a + 108\right)\cdot 193^{7} +O\left(193^{ 8 }\right)$
$r_{ 9 }$ $=$ $ 179 a^{2} + 93 a + 55 + \left(109 a^{2} + 69 a + 73\right)\cdot 193 + \left(153 a^{2} + 175 a + 102\right)\cdot 193^{2} + \left(56 a^{2} + 85 a + 166\right)\cdot 193^{3} + \left(90 a^{2} + 56 a + 188\right)\cdot 193^{4} + \left(19 a^{2} + 97 a + 12\right)\cdot 193^{5} + \left(122 a^{2} + 87 a + 17\right)\cdot 193^{6} + \left(158 a^{2} + 42 a + 170\right)\cdot 193^{7} +O\left(193^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(4,9)(5,6)(7,8)$
$(1,3,2)(4,6,7)(5,8,9)$
$(1,5,6)(2,9,4)(3,8,7)$
$(2,3)(4,6)(5,9)$
$(4,6,7)(5,9,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$6$
$9$$2$$(2,3)(4,7)(5,8)$$0$
$9$$2$$(4,9)(5,6)(7,8)$$2$
$9$$2$$(1,8)(2,9)(3,5)(4,6)$$0$
$2$$3$$(1,3,2)(4,6,7)(5,8,9)$$-3$
$6$$3$$(1,6,9)(2,4,8)(3,7,5)$$0$
$6$$3$$(1,3,2)(5,9,8)$$0$
$12$$3$$(1,5,6)(2,9,4)(3,8,7)$$0$
$18$$6$$(1,9,6)(2,5,4,3,8,7)$$0$
$18$$6$$(1,3,2)(4,5,7,9,6,8)$$-1$
$18$$6$$(1,9,3,8,2,5)(4,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.