Properties

Label 6.3e9_7e4.9t13.1
Dimension 6
Group $C_3^2 : C_6$
Conductor $ 3^{9} \cdot 7^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$C_3^2 : C_6$
Conductor:$47258883= 3^{9} \cdot 7^{4} $
Artin number field: Splitting field of $f= x^{9} + 3 x^{7} - 3 x^{6} + 3 x^{5} - 6 x^{4} - 3 x^{3} - 3 x^{2} + 3 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2 : S_3 $
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 14.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{3} + 4 x + 17 $
Roots:
$r_{ 1 }$ $=$ $ 7 a^{2} + 6 + \left(8 a^{2} + 12 a + 3\right)\cdot 19 + \left(12 a^{2} + 17 a + 14\right)\cdot 19^{2} + \left(6 a^{2} + 18 a + 17\right)\cdot 19^{3} + \left(15 a^{2} + 6 a + 2\right)\cdot 19^{4} + \left(8 a^{2} + 10 a + 17\right)\cdot 19^{5} + \left(9 a^{2} + 6 a + 18\right)\cdot 19^{6} + \left(4 a^{2} + 4 a + 11\right)\cdot 19^{7} + \left(12 a^{2} + 10 a + 13\right)\cdot 19^{8} + \left(12 a^{2} + 11 a + 14\right)\cdot 19^{9} + \left(17 a^{2} + 5 a + 2\right)\cdot 19^{10} + \left(a^{2} + 14 a + 5\right)\cdot 19^{11} + \left(16 a^{2} + 16 a + 11\right)\cdot 19^{12} + \left(11 a^{2} + 3 a + 12\right)\cdot 19^{13} +O\left(19^{ 14 }\right)$
$r_{ 2 }$ $=$ $ 16 + 18\cdot 19 + 17\cdot 19^{2} + 17\cdot 19^{3} + 16\cdot 19^{4} + 6\cdot 19^{5} + 13\cdot 19^{6} + 17\cdot 19^{7} + 9\cdot 19^{8} + 6\cdot 19^{9} + 15\cdot 19^{10} + 14\cdot 19^{12} + 6\cdot 19^{13} +O\left(19^{ 14 }\right)$
$r_{ 3 }$ $=$ $ 7 a^{2} + 11 a + 6 + \left(18 a^{2} + 17 a + 17\right)\cdot 19 + \left(3 a^{2} + a + 16\right)\cdot 19^{2} + \left(7 a^{2} + 8 a + 12\right)\cdot 19^{3} + \left(17 a^{2} + a + 14\right)\cdot 19^{4} + \left(4 a^{2} + 15 a + 6\right)\cdot 19^{5} + \left(3 a^{2} + 5 a + 2\right)\cdot 19^{6} + \left(2 a^{2} + 7 a + 12\right)\cdot 19^{7} + \left(8 a^{2} + 5 a + 2\right)\cdot 19^{8} + \left(6 a^{2} + 13 a + 17\right)\cdot 19^{9} + \left(7 a^{2} + 3 a + 6\right)\cdot 19^{10} + \left(14 a + 7\right)\cdot 19^{11} + \left(5 a^{2} + 3 a + 13\right)\cdot 19^{12} + \left(7 a^{2} + 5 a + 6\right)\cdot 19^{13} +O\left(19^{ 14 }\right)$
$r_{ 4 }$ $=$ $ 14 a^{2} + 9 a + 12 + \left(10 a^{2} + 15 a + 9\right)\cdot 19 + \left(14 a^{2} + 18 a + 13\right)\cdot 19^{2} + \left(a^{2} + 3 a + 4\right)\cdot 19^{3} + \left(15 a^{2} + 11 a + 2\right)\cdot 19^{4} + \left(8 a^{2} + 7 a + 17\right)\cdot 19^{5} + \left(10 a^{2} + 7 a + 8\right)\cdot 19^{6} + \left(9 a^{2} + 5 a + 6\right)\cdot 19^{7} + \left(10 a^{2} + 15 a + 15\right)\cdot 19^{8} + \left(2 a^{2} + 3 a + 6\right)\cdot 19^{9} + \left(4 a^{2} + 14 a + 17\right)\cdot 19^{10} + \left(18 a^{2} + 18 a + 16\right)\cdot 19^{11} + \left(5 a^{2} + 13 a + 15\right)\cdot 19^{12} + \left(12 a^{2} + 10 a + 13\right)\cdot 19^{13} +O\left(19^{ 14 }\right)$
$r_{ 5 }$ $=$ $ 3 a^{2} + 13 a + 8 + \left(a^{2} + 10 a + 9\right)\cdot 19 + \left(7 a^{2} + 17 a + 12\right)\cdot 19^{2} + \left(6 a^{2} + 6 a + 10\right)\cdot 19^{3} + \left(4 a^{2} + 9 a + 11\right)\cdot 19^{4} + \left(4 a^{2} + 5 a + 17\right)\cdot 19^{5} + \left(12 a^{2} + 11 a\right)\cdot 19^{6} + \left(a^{2} + 9 a + 17\right)\cdot 19^{7} + \left(11 a^{2} + 14 a + 16\right)\cdot 19^{8} + \left(12 a^{2} + 3 a + 1\right)\cdot 19^{9} + \left(3 a^{2} + 8 a + 16\right)\cdot 19^{10} + \left(5 a^{2} + 17 a + 13\right)\cdot 19^{11} + \left(5 a^{2} + a + 7\right)\cdot 19^{12} + \left(10 a + 13\right)\cdot 19^{13} +O\left(19^{ 14 }\right)$
$r_{ 6 }$ $=$ $ 9 a^{2} + 14 a + 5 + \left(18 a^{2} + 9 a + 11\right)\cdot 19 + \left(7 a^{2} + 18 a + 8\right)\cdot 19^{2} + \left(5 a^{2} + 3 a + 14\right)\cdot 19^{3} + \left(16 a^{2} + 8 a + 11\right)\cdot 19^{4} + \left(9 a^{2} + 17 a + 13\right)\cdot 19^{5} + \left(3 a^{2} + a + 15\right)\cdot 19^{6} + \left(15 a^{2} + 2 a + 8\right)\cdot 19^{7} + \left(18 a^{2} + 18 a + 18\right)\cdot 19^{8} + \left(18 a^{2} + a + 18\right)\cdot 19^{9} + \left(7 a^{2} + 7 a + 14\right)\cdot 19^{10} + \left(13 a^{2} + 6 a + 16\right)\cdot 19^{11} + \left(8 a^{2} + 13 a + 16\right)\cdot 19^{12} + \left(11 a^{2} + 3 a + 17\right)\cdot 19^{13} +O\left(19^{ 14 }\right)$
$r_{ 7 }$ $=$ $ 17 a^{2} + 10 a + 1 + \left(18 a^{2} + 10 a + 6\right)\cdot 19 + \left(10 a^{2} + a + 10\right)\cdot 19^{2} + \left(10 a^{2} + 15 a + 15\right)\cdot 19^{3} + \left(7 a^{2} + 13\right)\cdot 19^{4} + \left(a^{2} + a + 3\right)\cdot 19^{5} + \left(18 a^{2} + 5 a + 10\right)\cdot 19^{6} + \left(4 a^{2} + 9 a\right)\cdot 19^{7} + \left(15 a^{2} + 12 a + 9\right)\cdot 19^{8} + \left(3 a^{2} + 3 a + 16\right)\cdot 19^{9} + \left(16 a^{2} + 18 a + 17\right)\cdot 19^{10} + \left(17 a^{2} + 4 a + 15\right)\cdot 19^{11} + \left(15 a^{2} + 7 a + 10\right)\cdot 19^{12} + \left(13 a^{2} + 4 a + 11\right)\cdot 19^{13} +O\left(19^{ 14 }\right)$
$r_{ 8 }$ $=$ $ 12 + 13\cdot 19 + 7\cdot 19^{2} + 7\cdot 19^{3} + 18\cdot 19^{5} + 18\cdot 19^{6} + 11\cdot 19^{7} + 13\cdot 19^{8} + 11\cdot 19^{9} + 13\cdot 19^{10} + 14\cdot 19^{11} + 14\cdot 19^{12} + 4\cdot 19^{13} +O\left(19^{ 14 }\right)$
$r_{ 9 }$ $=$ $ 10 + 5\cdot 19 + 12\cdot 19^{2} + 12\cdot 19^{3} + 19^{4} + 13\cdot 19^{5} + 5\cdot 19^{6} + 8\cdot 19^{7} + 14\cdot 19^{8} + 9\cdot 19^{10} + 3\cdot 19^{11} + 9\cdot 19^{12} + 7\cdot 19^{13} +O\left(19^{ 14 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(2,5)(3,8)(4,7)(6,9)$
$(1,4,7)(2,9,8)$
$(1,2,3)(4,8,5)(6,7,9)$
$(2,8,9)(3,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$9$ $2$ $(1,6)(2,8)(3,7)(4,5)$ $0$
$2$ $3$ $(1,7,4)(2,9,8)(3,6,5)$ $-3$
$3$ $3$ $(1,4,7)(2,9,8)$ $0$
$3$ $3$ $(1,7,4)(2,8,9)$ $0$
$6$ $3$ $(1,2,3)(4,8,5)(6,7,9)$ $0$
$6$ $3$ $(1,3,2)(4,5,8)(6,9,7)$ $0$
$6$ $3$ $(1,9,6)(2,3,4)(5,7,8)$ $0$
$9$ $6$ $(1,5,7,6,4,3)(2,8)$ $0$
$9$ $6$ $(1,3,4,6,7,5)(2,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.