Properties

Label 6.3e9_31e4.18t51.2c1
Dimension 6
Group $C_3^2 : D_{6} $
Conductor $ 3^{9} \cdot 31^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$C_3^2 : D_{6} $
Conductor:$18177663843= 3^{9} \cdot 31^{4} $
Artin number field: Splitting field of $f= x^{9} + 3 x^{7} - 3 x^{6} - 3 x^{5} - 6 x^{4} - 3 x^{3} + 3 x^{2} + 3 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 18T51
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 97 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 97 }$: $ x^{3} + 9 x + 92 $
Roots:
$r_{ 1 }$ $=$ $ 83 a^{2} + 21 a + 13 + \left(71 a^{2} + 65 a + 43\right)\cdot 97 + \left(18 a^{2} + 15 a + 15\right)\cdot 97^{2} + \left(32 a^{2} + 49 a + 96\right)\cdot 97^{3} + \left(73 a^{2} + 81 a + 51\right)\cdot 97^{4} + \left(25 a^{2} + 81 a + 57\right)\cdot 97^{5} + \left(35 a^{2} + 78 a + 17\right)\cdot 97^{6} + \left(35 a^{2} + 8 a + 18\right)\cdot 97^{7} + \left(93 a^{2} + 91 a + 75\right)\cdot 97^{8} + \left(29 a^{2} + 41 a + 82\right)\cdot 97^{9} + \left(89 a^{2} + 57 a + 50\right)\cdot 97^{10} +O\left(97^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 63 a^{2} + 33 a + 87 + \left(84 a^{2} + 27 a + 22\right)\cdot 97 + \left(21 a^{2} + 60 a + 34\right)\cdot 97^{2} + \left(86 a^{2} + 70 a + 32\right)\cdot 97^{3} + \left(18 a^{2} + 86 a + 16\right)\cdot 97^{4} + \left(79 a^{2} + a + 87\right)\cdot 97^{5} + \left(47 a^{2} + a + 92\right)\cdot 97^{6} + \left(79 a^{2} + 44 a + 88\right)\cdot 97^{7} + \left(18 a^{2} + 40 a + 15\right)\cdot 97^{8} + \left(35 a^{2} + 86 a + 17\right)\cdot 97^{9} + \left(67 a^{2} + 74 a + 16\right)\cdot 97^{10} +O\left(97^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 12 + 57\cdot 97 + 16\cdot 97^{2} + 96\cdot 97^{3} + 32\cdot 97^{4} + 24\cdot 97^{5} + 20\cdot 97^{6} + 58\cdot 97^{7} + 56\cdot 97^{8} + 71\cdot 97^{9} + 84\cdot 97^{10} +O\left(97^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 68 + 6\cdot 97 + 38\cdot 97^{2} + 31\cdot 97^{3} + 23\cdot 97^{4} + 90\cdot 97^{5} + 54\cdot 97^{6} + 19\cdot 97^{7} + 22\cdot 97^{8} + 78\cdot 97^{9} + 58\cdot 97^{10} +O\left(97^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 28 a^{2} + 79 a + 71 + \left(37 a^{2} + 89 a + 29\right)\cdot 97 + \left(50 a^{2} + 5 a + 11\right)\cdot 97^{2} + \left(22 a^{2} + 84 a + 38\right)\cdot 97^{3} + \left(26 a^{2} + 39 a + 60\right)\cdot 97^{4} + \left(21 a^{2} + 88 a + 30\right)\cdot 97^{5} + \left(84 a^{2} + 8 a + 20\right)\cdot 97^{6} + \left(94 a^{2} + 26 a + 84\right)\cdot 97^{7} + \left(81 a^{2} + 25 a + 6\right)\cdot 97^{8} + \left(59 a^{2} + 87 a + 68\right)\cdot 97^{9} + \left(49 a^{2} + 10 a + 6\right)\cdot 97^{10} +O\left(97^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 35 a^{2} + 17 a + 16 + \left(74 a^{2} + 94 a + 58\right)\cdot 97 + \left(18 a^{2} + 41 a + 15\right)\cdot 97^{2} + \left(55 a^{2} + 26 a + 40\right)\cdot 97^{3} + \left(60 a^{2} + 29 a + 72\right)\cdot 97^{4} + \left(25 a^{2} + 11 a + 56\right)\cdot 97^{5} + \left(75 a^{2} + 29 a + 63\right)\cdot 97^{6} + \left(44 a^{2} + 69 a + 74\right)\cdot 97^{7} + \left(25 a^{2} + 66 a + 55\right)\cdot 97^{8} + \left(26 a^{2} + 74 a + 60\right)\cdot 97^{9} + \left(71 a^{2} + 45 a + 39\right)\cdot 97^{10} +O\left(97^{ 11 }\right)$
$r_{ 7 }$ $=$ $ 17 + 33\cdot 97 + 42\cdot 97^{2} + 66\cdot 97^{3} + 40\cdot 97^{4} + 79\cdot 97^{5} + 21\cdot 97^{6} + 19\cdot 97^{7} + 18\cdot 97^{8} + 44\cdot 97^{9} + 50\cdot 97^{10} +O\left(97^{ 11 }\right)$
$r_{ 8 }$ $=$ $ 6 a^{2} + 82 a + 36 + \left(72 a^{2} + 76 a + 44\right)\cdot 97 + \left(24 a^{2} + 30 a + 51\right)\cdot 97^{2} + \left(85 a^{2} + 39 a + 26\right)\cdot 97^{3} + \left(51 a^{2} + 67 a + 20\right)\cdot 97^{4} + \left(93 a^{2} + 6 a + 76\right)\cdot 97^{5} + \left(61 a^{2} + 87 a + 80\right)\cdot 97^{6} + \left(19 a^{2} + 26 a + 20\right)\cdot 97^{7} + \left(93 a^{2} + 31 a + 74\right)\cdot 97^{8} + \left(a^{2} + 20 a + 11\right)\cdot 97^{9} + \left(77 a^{2} + 11 a + 74\right)\cdot 97^{10} +O\left(97^{ 11 }\right)$
$r_{ 9 }$ $=$ $ 76 a^{2} + 59 a + 68 + \left(47 a^{2} + 34 a + 92\right)\cdot 97 + \left(59 a^{2} + 39 a + 65\right)\cdot 97^{2} + \left(9 a^{2} + 21 a + 57\right)\cdot 97^{3} + \left(60 a^{2} + 83 a + 69\right)\cdot 97^{4} + \left(45 a^{2} + 3 a + 79\right)\cdot 97^{5} + \left(83 a^{2} + 86 a + 15\right)\cdot 97^{6} + \left(16 a^{2} + 18 a + 4\right)\cdot 97^{7} + \left(75 a^{2} + 36 a + 63\right)\cdot 97^{8} + \left(40 a^{2} + 77 a + 50\right)\cdot 97^{9} + \left(33 a^{2} + 90 a + 6\right)\cdot 97^{10} +O\left(97^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(2,5,8)(3,4,7)$
$(2,5)(4,7)(6,9)$
$(1,9,6)(2,5,8)(3,7,4)$
$(1,3,2)(4,8,6)(5,9,7)$
$(2,3)(4,8)(5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$6$
$9$$2$$(2,3)(4,8)(5,7)$$-2$
$9$$2$$(2,4)(3,8)(5,7)(6,9)$$0$
$9$$2$$(2,5)(4,7)(6,9)$$0$
$2$$3$$(1,9,6)(2,5,8)(3,7,4)$$-3$
$6$$3$$(1,4,2)(3,5,9)(6,7,8)$$0$
$6$$3$$(2,5,8)(3,4,7)$$0$
$12$$3$$(1,3,2)(4,8,6)(5,9,7)$$0$
$18$$6$$(1,9,6)(2,7,8,3,5,4)$$1$
$18$$6$$(2,3,5,4,8,7)(6,9)$$0$
$18$$6$$(1,3,2,9,4,5)(6,7,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.