Properties

Label 6.3e9_23e4.18t51.1c1
Dimension 6
Group $C_3^2 : D_{6} $
Conductor $ 3^{9} \cdot 23^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$C_3^2 : D_{6} $
Conductor:$5508110403= 3^{9} \cdot 23^{4} $
Artin number field: Splitting field of $f= x^{9} - x^{6} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 18T51
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 211 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 211 }$: $ x^{3} + 2 x + 209 $
Roots:
$r_{ 1 }$ $=$ $ 13 + 89\cdot 211 + 207\cdot 211^{2} + 71\cdot 211^{3} + 191\cdot 211^{4} + 153\cdot 211^{5} + 194\cdot 211^{6} +O\left(211^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 16 + 156\cdot 211 + 51\cdot 211^{2} + 150\cdot 211^{3} + 79\cdot 211^{4} + 54\cdot 211^{5} + 46\cdot 211^{6} +O\left(211^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 182 + 176\cdot 211 + 162\cdot 211^{2} + 199\cdot 211^{3} + 150\cdot 211^{4} + 2\cdot 211^{5} + 181\cdot 211^{6} +O\left(211^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 39 a^{2} + 97 a + 52 + \left(111 a^{2} + 88 a + 148\right)\cdot 211 + \left(42 a^{2} + 85 a + 56\right)\cdot 211^{2} + \left(193 a^{2} + 60 a + 187\right)\cdot 211^{3} + \left(34 a^{2} + 183 a + 116\right)\cdot 211^{4} + \left(179 a^{2} + 87 a + 168\right)\cdot 211^{5} + \left(93 a^{2} + 56 a + 54\right)\cdot 211^{6} +O\left(211^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 45 a^{2} + 88 a + 60 + \left(27 a^{2} + 100 a + 36\right)\cdot 211 + \left(48 a^{2} + 124 a + 64\right)\cdot 211^{2} + \left(11 a^{2} + 198 a + 85\right)\cdot 211^{3} + \left(26 a^{2} + 6 a + 175\right)\cdot 211^{4} + \left(21 a^{2} + 53 a + 168\right)\cdot 211^{5} + \left(35 a^{2} + 92 a + 46\right)\cdot 211^{6} +O\left(211^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 48 a^{2} + 22 a + 64 + \left(65 a^{2} + 197 a + 157\right)\cdot 211 + \left(20 a^{2} + 90 a + 167\right)\cdot 211^{2} + \left(97 a^{2} + 161 a + 199\right)\cdot 211^{3} + \left(164 a^{2} + 62 a + 148\right)\cdot 211^{4} + \left(188 a^{2} + 91 a + 40\right)\cdot 211^{5} + \left(158 a^{2} + 22 a + 71\right)\cdot 211^{6} +O\left(211^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 124 a^{2} + 92 a + 95 + \left(34 a^{2} + 136 a + 116\right)\cdot 211 + \left(148 a^{2} + 34 a + 197\right)\cdot 211^{2} + \left(131 a^{2} + 200 a + 34\right)\cdot 211^{3} + \left(11 a^{2} + 175 a + 156\right)\cdot 211^{4} + \left(54 a^{2} + 31 a + 1\right)\cdot 211^{5} + \left(169 a^{2} + 132 a + 85\right)\cdot 211^{6} +O\left(211^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 169 a^{2} + 157 a + 155 + \left(104 a + 141\right)\cdot 211 + \left(57 a^{2} + 109 a + 5\right)\cdot 211^{2} + \left(167 a^{2} + 83 a + 12\right)\cdot 211^{3} + \left(54 a^{2} + 158 a + 73\right)\cdot 211^{4} + \left(62 a^{2} + 40 a + 153\right)\cdot 211^{5} + \left(105 a^{2} + 7 a + 210\right)\cdot 211^{6} +O\left(211^{ 7 }\right)$
$r_{ 9 }$ $=$ $ 208 a^{2} + 177 a + 207 + \left(182 a^{2} + 5 a + 32\right)\cdot 211 + \left(105 a^{2} + 188 a + 141\right)\cdot 211^{2} + \left(32 a^{2} + 139 a + 113\right)\cdot 211^{3} + \left(130 a^{2} + 45 a + 173\right)\cdot 211^{4} + \left(127 a^{2} + 117 a + 99\right)\cdot 211^{5} + \left(70 a^{2} + 111 a + 164\right)\cdot 211^{6} +O\left(211^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,2,3)(4,6,7)(5,8,9)$
$(4,9)(5,6)(7,8)$
$(2,3)(4,6)(5,9)$
$(1,9,4)(2,5,6)(3,8,7)$
$(4,6,7)(5,9,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$6$
$9$$2$$(2,3)(6,7)(8,9)$$0$
$9$$2$$(4,9)(5,6)(7,8)$$-2$
$9$$2$$(1,8)(2,5)(3,9)(4,6)$$0$
$2$$3$$(1,2,3)(4,6,7)(5,8,9)$$-3$
$6$$3$$(1,4,5)(2,6,8)(3,7,9)$$0$
$6$$3$$(1,3,2)(5,8,9)$$0$
$12$$3$$(1,9,4)(2,5,6)(3,8,7)$$0$
$18$$6$$(1,5,4)(2,9,6,3,8,7)$$0$
$18$$6$$(1,2,3)(4,5,7,9,6,8)$$1$
$18$$6$$(1,5,3,8,2,9)(4,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.