Properties

Label 6.3e9_107e2.9t18.1c1
Dimension 6
Group $C_3^2 : D_{6} $
Conductor $ 3^{9} \cdot 107^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$C_3^2 : D_{6} $
Conductor:$225350667= 3^{9} \cdot 107^{2} $
Artin number field: Splitting field of $f= x^{9} - 2 x^{6} + 4 x^{3} - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2 : D_{6} $
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 14.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{3} + 2 x + 11 $
Roots:
$r_{ 1 }$ $=$ $ 9 a^{2} + 11 a + 10 + \left(12 a^{2} + 9 a + 6\right)\cdot 13 + \left(5 a^{2} + 12 a + 1\right)\cdot 13^{2} + \left(4 a^{2} + 9 a + 1\right)\cdot 13^{3} + \left(8 a^{2} + 8 a + 9\right)\cdot 13^{4} + \left(a^{2} + 7 a + 6\right)\cdot 13^{5} + \left(2 a^{2} + 10\right)\cdot 13^{6} + \left(10 a + 8\right)\cdot 13^{7} + \left(7 a^{2} + 10 a\right)\cdot 13^{8} + \left(a^{2} + 9 a + 7\right)\cdot 13^{9} + \left(12 a^{2} + 7 a + 5\right)\cdot 13^{10} + \left(3 a^{2} + 4 a + 10\right)\cdot 13^{11} + \left(4 a^{2} + 6 a + 2\right)\cdot 13^{12} + \left(7 a^{2} + 11 a + 8\right)\cdot 13^{13} +O\left(13^{ 14 }\right)$
$r_{ 2 }$ $=$ $ 9 a^{2} + 3 a + 10 + \left(7 a + 3\right)\cdot 13 + \left(a^{2} + 3 a + 12\right)\cdot 13^{2} + \left(10 a^{2} + 8 a + 12\right)\cdot 13^{3} + \left(4 a^{2} + a + 12\right)\cdot 13^{4} + \left(7 a^{2} + 8 a + 9\right)\cdot 13^{5} + \left(12 a^{2} + 5 a + 2\right)\cdot 13^{6} + \left(2 a^{2} + 8 a + 8\right)\cdot 13^{7} + \left(8 a^{2} + 3 a + 6\right)\cdot 13^{8} + 9 a^{2}13^{9} + \left(6 a^{2} + 6 a + 7\right)\cdot 13^{10} + \left(2 a^{2} + 3 a + 8\right)\cdot 13^{11} + \left(4 a^{2} + 11 a + 2\right)\cdot 13^{12} + \left(7 a + 3\right)\cdot 13^{13} +O\left(13^{ 14 }\right)$
$r_{ 3 }$ $=$ $ 7 a^{2} + 4 a + \left(4 a^{2} + a + 8\right)\cdot 13 + \left(10 a^{2} + 12 a + 11\right)\cdot 13^{2} + \left(12 a + 9\right)\cdot 13^{3} + \left(7 a^{2} + 6 a + 6\right)\cdot 13^{4} + \left(5 a^{2} + 9 a\right)\cdot 13^{5} + \left(8 a^{2} + 5 a + 8\right)\cdot 13^{6} + \left(2 a^{2} + 4 a + 1\right)\cdot 13^{7} + \left(2 a + 12\right)\cdot 13^{8} + \left(10 a^{2} + 4\right)\cdot 13^{9} + \left(2 a^{2} + 6 a\right)\cdot 13^{10} + \left(8 a^{2} + 9 a + 11\right)\cdot 13^{11} + \left(12 a^{2} + 7 a + 5\right)\cdot 13^{12} + \left(9 a^{2} + 7 a + 4\right)\cdot 13^{13} +O\left(13^{ 14 }\right)$
$r_{ 4 }$ $=$ $ a^{2} + 7 a + 4 + \left(7 a^{2} + 7 a\right)\cdot 13 + \left(3 a^{2} + 4 a + 9\right)\cdot 13^{2} + \left(2 a^{2} + 3 a + 7\right)\cdot 13^{3} + \left(a^{2} + a + 10\right)\cdot 13^{4} + \left(11 a^{2} + 8 a + 12\right)\cdot 13^{5} + \left(9 a^{2} + 4 a + 12\right)\cdot 13^{6} + \left(4 a^{2} + 2 a + 3\right)\cdot 13^{7} + \left(4 a^{2} + 7 a + 11\right)\cdot 13^{8} + \left(7 a^{2} + 9 a + 8\right)\cdot 13^{9} + \left(12 a^{2} + 4\right)\cdot 13^{10} + 2 a\cdot 13^{11} + \left(7 a^{2} + 8 a + 6\right)\cdot 13^{12} + \left(10 a^{2} + 6 a + 11\right)\cdot 13^{13} +O\left(13^{ 14 }\right)$
$r_{ 5 }$ $=$ $ a^{2} + 9 a + 4 + \left(10 a^{2} + 2 a + 4\right)\cdot 13 + \left(12 a^{2} + 4 a + 8\right)\cdot 13^{2} + \left(9 a^{2} + 4 a\right)\cdot 13^{3} + \left(5 a^{2} + 8 a + 8\right)\cdot 13^{4} + \left(11 a^{2} + 11 a + 4\right)\cdot 13^{5} + \left(9 a^{2} + 7 a + 4\right)\cdot 13^{6} + \left(7 a^{2} + 9 a + 12\right)\cdot 13^{7} + \left(6 a^{2} + 6 a + 9\right)\cdot 13^{8} + \left(4 a^{2} + 6 a\right)\cdot 13^{9} + \left(10 a^{2} + 4 a + 6\right)\cdot 13^{10} + \left(12 a + 4\right)\cdot 13^{11} + \left(10 a^{2} + 7 a + 1\right)\cdot 13^{12} + \left(4 a^{2} + 7 a + 8\right)\cdot 13^{13} +O\left(13^{ 14 }\right)$
$r_{ 6 }$ $=$ $ 8 a^{2} + 12 a + \left(12 a^{2} + 8 a + 11\right)\cdot 13 + \left(5 a^{2} + 9 a + 5\right)\cdot 13^{2} + \left(11 a^{2} + 7 a + 10\right)\cdot 13^{3} + \left(12 a^{2} + 2 a + 10\right)\cdot 13^{4} + \left(3 a^{2} + 10 a + 9\right)\cdot 13^{5} + \left(11 a^{2} + 6 a + 9\right)\cdot 13^{6} + \left(9 a^{2} + 7 a + 8\right)\cdot 13^{7} + \left(10 a^{2} + 11 a + 5\right)\cdot 13^{8} + \left(a^{2} + 2 a + 7\right)\cdot 13^{9} + \left(7 a^{2} + 12 a + 7\right)\cdot 13^{10} + \left(6 a^{2} + 4 a + 9\right)\cdot 13^{11} + \left(4 a^{2} + 8 a + 11\right)\cdot 13^{12} + \left(5 a^{2} + 6 a + 9\right)\cdot 13^{13} +O\left(13^{ 14 }\right)$
$r_{ 7 }$ $=$ $ 3 a^{2} + 8 a + 12 + \left(6 a^{2} + 8 a + 5\right)\cdot 13 + \left(3 a^{2} + 8 a + 2\right)\cdot 13^{2} + \left(6 a^{2} + 12 a + 4\right)\cdot 13^{3} + \left(3 a^{2} + 2 a + 6\right)\cdot 13^{4} + \left(10 a + 6\right)\cdot 13^{5} + \left(a^{2} + 7 a + 2\right)\cdot 13^{6} + 8 a^{2}13^{7} + \left(a^{2} + 8 a + 1\right)\cdot 13^{8} + \left(4 a^{2} + 6 a + 10\right)\cdot 13^{9} + \left(a^{2} + 4 a + 2\right)\cdot 13^{10} + \left(8 a^{2} + 6 a + 2\right)\cdot 13^{11} + \left(a^{2} + 11 a + 4\right)\cdot 13^{12} + \left(8 a^{2} + 7 a + 6\right)\cdot 13^{13} +O\left(13^{ 14 }\right)$
$r_{ 8 }$ $=$ $ 3 a^{2} + a + 12 + \left(2 a^{2} + 3 a + 4\right)\cdot 13 + \left(12 a^{2} + 5 a + 5\right)\cdot 13^{2} + \left(5 a^{2} + 12\right)\cdot 13^{3} + \left(2 a^{2} + 3 a + 4\right)\cdot 13^{4} + \left(7 a^{2} + 6 a + 11\right)\cdot 13^{5} + \left(3 a^{2} + 12 a + 5\right)\cdot 13^{6} + \left(2 a^{2} + 7 a + 5\right)\cdot 13^{7} + \left(11 a^{2} + 2 a + 9\right)\cdot 13^{8} + \left(11 a^{2} + 6 a + 11\right)\cdot 13^{9} + \left(8 a^{2} + 2 a + 12\right)\cdot 13^{10} + \left(9 a^{2} + 10 a + 12\right)\cdot 13^{11} + \left(11 a^{2} + 6 a + 8\right)\cdot 13^{12} + \left(7 a^{2} + 10 a + 1\right)\cdot 13^{13} +O\left(13^{ 14 }\right)$
$r_{ 9 }$ $=$ $ 11 a^{2} + 10 a + \left(8 a^{2} + 2 a + 7\right)\cdot 13 + \left(9 a^{2} + 4 a + 8\right)\cdot 13^{2} + \left(5 a + 5\right)\cdot 13^{3} + \left(6 a^{2} + 3 a + 8\right)\cdot 13^{4} + \left(3 a^{2} + 6 a + 2\right)\cdot 13^{5} + \left(6 a^{2} + 8\right)\cdot 13^{6} + \left(a + 2\right)\cdot 13^{7} + \left(2 a^{2} + 12 a + 8\right)\cdot 13^{8} + \left(a^{2} + 9 a\right)\cdot 13^{9} + \left(3 a^{2} + 7 a + 5\right)\cdot 13^{10} + \left(11 a^{2} + 11 a + 5\right)\cdot 13^{11} + \left(8 a^{2} + 9 a + 8\right)\cdot 13^{12} + \left(10 a^{2} + 11 a + 11\right)\cdot 13^{13} +O\left(13^{ 14 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(2,6)(3,8)(5,9)$
$(1,4,7)(3,9,6)$
$(2,5)(4,7)(6,9)$
$(2,8,5)(3,6,9)$
$(1,8,3)(2,6,4)(5,9,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$6$
$9$$2$$(2,6)(3,8)(5,9)$$2$
$9$$2$$(2,5)(4,7)(6,9)$$0$
$9$$2$$(2,9)(3,8)(4,7)(5,6)$$0$
$2$$3$$(1,7,4)(2,8,5)(3,9,6)$$-3$
$6$$3$$(1,8,3)(2,6,4)(5,9,7)$$0$
$6$$3$$(1,4,7)(3,9,6)$$0$
$12$$3$$(1,5,3)(2,9,7)(4,8,6)$$0$
$18$$6$$(1,4,7)(2,3,8,9,5,6)$$-1$
$18$$6$$(1,8,3)(2,9,4,5,6,7)$$0$
$18$$6$$(1,4)(2,6,5,3,8,9)$$0$
The blue line marks the conjugacy class containing complex conjugation.