Properties

Label 6.3e8_5e3_7e3.9t13.1
Dimension 6
Group $C_3^2 : C_6$
Conductor $ 3^{8} \cdot 5^{3} \cdot 7^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$C_3^2 : C_6$
Conductor:$281302875= 3^{8} \cdot 5^{3} \cdot 7^{3} $
Artin number field: Splitting field of $f= x^{9} + 9 x^{7} - 6 x^{6} + 33 x^{5} - 27 x^{4} + 92 x^{3} - 12 x^{2} + 99 x + 10 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2 : S_3 $
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 14.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{3} + 2 x + 27 $
Roots:
$r_{ 1 }$ $=$ $ 4 + 21\cdot 29 + 29^{2} + 12\cdot 29^{3} + 11\cdot 29^{4} + 3\cdot 29^{5} + 5\cdot 29^{6} + 8\cdot 29^{7} + 10\cdot 29^{8} + 12\cdot 29^{9} + 22\cdot 29^{10} + 16\cdot 29^{11} + 15\cdot 29^{12} + 9\cdot 29^{13} +O\left(29^{ 14 }\right)$
$r_{ 2 }$ $=$ $ 23 a^{2} + a + 5 + \left(2 a + 5\right)\cdot 29 + \left(12 a^{2} + 26 a + 2\right)\cdot 29^{2} + \left(9 a^{2} + 6 a + 24\right)\cdot 29^{3} + \left(14 a^{2} + 4 a + 12\right)\cdot 29^{4} + \left(a^{2} + 19 a + 22\right)\cdot 29^{5} + \left(4 a^{2} + 3 a + 5\right)\cdot 29^{6} + \left(2 a^{2} + 13 a + 23\right)\cdot 29^{7} + \left(16 a^{2} + 28 a + 6\right)\cdot 29^{8} + \left(10 a^{2} + 6 a\right)\cdot 29^{9} + \left(14 a^{2} + 18 a + 20\right)\cdot 29^{10} + \left(8 a^{2} + 17 a + 15\right)\cdot 29^{11} + \left(16 a^{2} + 10 a + 15\right)\cdot 29^{12} + \left(9 a^{2} + 2 a + 14\right)\cdot 29^{13} +O\left(29^{ 14 }\right)$
$r_{ 3 }$ $=$ $ 9 + 16\cdot 29 + 4\cdot 29^{2} + 3\cdot 29^{3} + 22\cdot 29^{4} + 20\cdot 29^{5} + 28\cdot 29^{6} + 20\cdot 29^{7} + 28\cdot 29^{8} + 13\cdot 29^{9} + 7\cdot 29^{10} + 13\cdot 29^{11} + 18\cdot 29^{12} + 2\cdot 29^{13} +O\left(29^{ 14 }\right)$
$r_{ 4 }$ $=$ $ 14 a^{2} + 7 a + 14 + \left(13 a^{2} + 13 a + 22\right)\cdot 29 + \left(21 a^{2} + 17 a + 9\right)\cdot 29^{2} + \left(15 a^{2} + 10 a + 25\right)\cdot 29^{3} + \left(22 a^{2} + 11 a + 28\right)\cdot 29^{4} + \left(11 a^{2} + 4 a + 10\right)\cdot 29^{5} + \left(13 a^{2} + 22 a + 7\right)\cdot 29^{6} + \left(7 a + 12\right)\cdot 29^{7} + \left(19 a^{2} + 4 a + 19\right)\cdot 29^{8} + \left(14 a^{2} + 19 a + 10\right)\cdot 29^{9} + \left(21 a^{2} + 25 a + 15\right)\cdot 29^{10} + \left(21 a^{2} + 8 a + 28\right)\cdot 29^{11} + \left(21 a^{2} + 13 a + 14\right)\cdot 29^{12} + \left(14 a^{2} + 22 a + 22\right)\cdot 29^{13} +O\left(29^{ 14 }\right)$
$r_{ 5 }$ $=$ $ 16 a^{2} + 18 a + 15 + \left(a^{2} + 11 a + 25\right)\cdot 29 + \left(20 a^{2} + 18 a + 12\right)\cdot 29^{2} + \left(27 a^{2} + 24 a + 19\right)\cdot 29^{3} + \left(12 a^{2} + 27 a + 20\right)\cdot 29^{4} + \left(7 a^{2} + 6 a + 20\right)\cdot 29^{5} + \left(6 a^{2} + 26 a + 8\right)\cdot 29^{6} + \left(20 a^{2} + 20 a + 18\right)\cdot 29^{7} + \left(20 a^{2} + 5 a + 22\right)\cdot 29^{8} + \left(26 a^{2} + 7 a + 21\right)\cdot 29^{9} + \left(17 a^{2} + 23 a + 24\right)\cdot 29^{10} + \left(15 a^{2} + 8 a + 5\right)\cdot 29^{11} + \left(20 a^{2} + 16 a + 21\right)\cdot 29^{12} + \left(2 a^{2} + 22 a + 24\right)\cdot 29^{13} +O\left(29^{ 14 }\right)$
$r_{ 6 }$ $=$ $ 17 a^{2} + 6 a + 18 + \left(23 a^{2} + 16 a + 16\right)\cdot 29 + \left(28 a^{2} + 11 a + 19\right)\cdot 29^{2} + \left(7 a^{2} + 18 a + 24\right)\cdot 29^{3} + \left(19 a^{2} + 17 a + 14\right)\cdot 29^{4} + \left(7 a^{2} + 14 a + 5\right)\cdot 29^{5} + \left(a^{2} + 9 a + 20\right)\cdot 29^{6} + \left(8 a^{2} + 28 a + 12\right)\cdot 29^{7} + \left(25 a^{2} + 4 a + 8\right)\cdot 29^{8} + \left(16 a^{2} + 21 a + 23\right)\cdot 29^{9} + \left(22 a^{2} + 5 a + 16\right)\cdot 29^{10} + \left(21 a^{2} + 3 a + 28\right)\cdot 29^{11} + \left(12 a^{2} + 24 a + 2\right)\cdot 29^{12} + \left(6 a^{2} + 13 a + 21\right)\cdot 29^{13} +O\left(29^{ 14 }\right)$
$r_{ 7 }$ $=$ $ 27 a^{2} + 16 a + 12 + \left(20 a^{2} + 28 a + 3\right)\cdot 29 + \left(7 a^{2} + 28 a + 1\right)\cdot 29^{2} + \left(5 a^{2} + 28 a + 21\right)\cdot 29^{3} + \left(16 a^{2} + 28 a + 10\right)\cdot 29^{4} + \left(9 a^{2} + 9 a + 27\right)\cdot 29^{5} + \left(14 a^{2} + 26 a + 27\right)\cdot 29^{6} + \left(20 a^{2} + 21 a + 9\right)\cdot 29^{7} + \left(13 a^{2} + 19 a + 12\right)\cdot 29^{8} + \left(26 a^{2} + 17 a + 26\right)\cdot 29^{9} + \left(13 a^{2} + 26 a + 14\right)\cdot 29^{10} + \left(14 a^{2} + 16 a + 28\right)\cdot 29^{11} + \left(23 a^{2} + 20 a + 26\right)\cdot 29^{12} + \left(7 a^{2} + 21 a + 22\right)\cdot 29^{13} +O\left(29^{ 14 }\right)$
$r_{ 8 }$ $=$ $ 19 a^{2} + 10 a + 19 + \left(26 a^{2} + 15 a + 10\right)\cdot 29 + \left(25 a^{2} + 13 a + 1\right)\cdot 29^{2} + \left(20 a^{2} + 26 a + 20\right)\cdot 29^{3} + \left(a^{2} + 25 a + 5\right)\cdot 29^{4} + \left(20 a^{2} + 2 a + 18\right)\cdot 29^{5} + \left(18 a^{2} + 28 a + 15\right)\cdot 29^{6} + \left(6 a^{2} + 23 a + 19\right)\cdot 29^{7} + \left(21 a^{2} + 23 a + 13\right)\cdot 29^{8} + \left(20 a^{2} + 14 a + 23\right)\cdot 29^{9} + \left(25 a^{2} + 16 a + 15\right)\cdot 29^{10} + \left(4 a^{2} + 2 a + 20\right)\cdot 29^{11} + \left(21 a^{2} + 2 a + 2\right)\cdot 29^{12} + \left(16 a^{2} + 4 a + 24\right)\cdot 29^{13} +O\left(29^{ 14 }\right)$
$r_{ 9 }$ $=$ $ 20 + 23\cdot 29 + 4\cdot 29^{2} + 24\cdot 29^{3} + 17\cdot 29^{4} + 15\cdot 29^{5} + 25\cdot 29^{6} + 19\cdot 29^{7} + 22\cdot 29^{8} + 12\cdot 29^{9} + 7\cdot 29^{10} + 16\cdot 29^{11} + 26\cdot 29^{12} + 2\cdot 29^{13} +O\left(29^{ 14 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,8,4)(2,6,3)(5,7,9)$
$(1,3,9)(2,5,8)(4,6,7)$
$(2,8,5)(4,6,7)$
$(2,4)(3,9)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$9$ $2$ $(1,7)(2,8)(3,6)(4,9)$ $0$
$2$ $3$ $(1,3,9)(2,5,8)(4,6,7)$ $-3$
$3$ $3$ $(1,9,3)(4,6,7)$ $0$
$3$ $3$ $(1,3,9)(4,7,6)$ $0$
$6$ $3$ $(1,8,4)(2,6,3)(5,7,9)$ $0$
$6$ $3$ $(1,4,8)(2,3,6)(5,9,7)$ $0$
$6$ $3$ $(1,4,2)(3,6,5)(7,8,9)$ $0$
$9$ $6$ $(1,6,9,7,3,4)(2,8)$ $0$
$9$ $6$ $(1,4,3,7,9,6)(2,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.