Properties

Label 6.3e8_5e3_19e2.8t33.1c1
Dimension 6
Group $C_2^4:C_6$
Conductor $ 3^{8} \cdot 5^{3} \cdot 19^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$C_2^4:C_6$
Conductor:$296065125= 3^{8} \cdot 5^{3} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + x^{6} + 7 x^{5} - 3 x^{4} - 5 x^{3} + 11 x^{2} + 15 x + 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^4:C_6$
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 24.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{3} + 2 x + 27 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 16\cdot 29 + 10\cdot 29^{2} + 4\cdot 29^{3} + 2\cdot 29^{4} + 20\cdot 29^{5} + 3\cdot 29^{6} + 11\cdot 29^{8} + 22\cdot 29^{9} + 12\cdot 29^{10} + 11\cdot 29^{11} + 18\cdot 29^{12} + 15\cdot 29^{13} + 15\cdot 29^{14} + 17\cdot 29^{15} + 29^{16} + 15\cdot 29^{17} + 10\cdot 29^{18} + 9\cdot 29^{19} + 29^{20} + 17\cdot 29^{21} + 15\cdot 29^{22} + 15\cdot 29^{23} +O\left(29^{ 24 }\right)$
$r_{ 2 }$ $=$ $ 12 a^{2} + 17 a + 22 + \left(3 a^{2} + 27 a + 27\right)\cdot 29 + \left(5 a^{2} + 2 a + 15\right)\cdot 29^{2} + \left(24 a + 12\right)\cdot 29^{3} + \left(22 a^{2} + 3 a + 2\right)\cdot 29^{4} + \left(19 a^{2} + 26 a + 13\right)\cdot 29^{5} + \left(2 a^{2} + 17 a + 1\right)\cdot 29^{6} + \left(9 a^{2} + 13 a + 17\right)\cdot 29^{7} + \left(15 a^{2} + 23 a\right)\cdot 29^{8} + \left(19 a^{2} + 10 a + 2\right)\cdot 29^{9} + \left(20 a^{2} + 17 a + 1\right)\cdot 29^{10} + \left(2 a^{2} + 12 a + 1\right)\cdot 29^{11} + \left(3 a^{2} + 19 a + 3\right)\cdot 29^{12} + \left(12 a^{2} + 13 a + 12\right)\cdot 29^{13} + \left(24 a^{2} + 22 a\right)\cdot 29^{14} + \left(24 a^{2} + 25 a + 25\right)\cdot 29^{15} + \left(6 a^{2} + 8 a + 18\right)\cdot 29^{16} + \left(8 a^{2} + 11 a + 13\right)\cdot 29^{17} + \left(6 a^{2} + 16 a + 26\right)\cdot 29^{18} + \left(a^{2} + 4 a + 28\right)\cdot 29^{19} + \left(2 a^{2} + 19 a + 13\right)\cdot 29^{20} + \left(7 a^{2} + 6 a + 10\right)\cdot 29^{21} + \left(11 a^{2} + 28 a + 18\right)\cdot 29^{22} + \left(21 a^{2} + 4 a + 19\right)\cdot 29^{23} +O\left(29^{ 24 }\right)$
$r_{ 3 }$ $=$ $ 4 a^{2} + 19 a + 21 + \left(2 a^{2} + 5 a + 6\right)\cdot 29 + \left(a^{2} + 9 a + 20\right)\cdot 29^{2} + \left(17 a^{2} + 19 a + 15\right)\cdot 29^{3} + \left(17 a^{2} + 18 a + 25\right)\cdot 29^{4} + \left(3 a^{2} + 25 a + 10\right)\cdot 29^{5} + \left(2 a^{2} + 5 a + 10\right)\cdot 29^{6} + \left(2 a^{2} + 17\right)\cdot 29^{7} + \left(28 a^{2} + 27 a + 17\right)\cdot 29^{8} + \left(6 a^{2} + 10 a + 4\right)\cdot 29^{9} + \left(15 a^{2} + 19 a + 13\right)\cdot 29^{10} + \left(6 a^{2} + 25 a + 25\right)\cdot 29^{11} + \left(15 a^{2} + 14 a + 28\right)\cdot 29^{12} + \left(15 a^{2} + 15 a + 6\right)\cdot 29^{13} + \left(5 a^{2} + 10 a + 4\right)\cdot 29^{14} + 6 a^{2}29^{15} + \left(24 a^{2} + 13 a + 13\right)\cdot 29^{16} + \left(10 a^{2} + a + 7\right)\cdot 29^{17} + \left(9 a^{2} + 21 a + 11\right)\cdot 29^{18} + \left(7 a^{2} + 14 a + 27\right)\cdot 29^{19} + \left(5 a^{2} + 24 a + 27\right)\cdot 29^{20} + \left(24 a^{2} + 7 a + 13\right)\cdot 29^{21} + \left(a^{2} + 25 a + 15\right)\cdot 29^{22} + \left(20 a^{2} + a + 27\right)\cdot 29^{23} +O\left(29^{ 24 }\right)$
$r_{ 4 }$ $=$ $ 10 a^{2} + 15 a + 2 + \left(2 a^{2} + 24 a + 10\right)\cdot 29 + \left(22 a^{2} + 27 a + 24\right)\cdot 29^{2} + \left(a^{2} + 18 a + 10\right)\cdot 29^{3} + \left(15 a^{2} + 16 a + 14\right)\cdot 29^{4} + \left(2 a^{2} + 27 a + 15\right)\cdot 29^{5} + \left(a^{2} + 7 a\right)\cdot 29^{6} + \left(11 a^{2} + 18 a + 5\right)\cdot 29^{7} + \left(20 a^{2} + 22 a + 21\right)\cdot 29^{8} + \left(5 a^{2} + 10 a + 6\right)\cdot 29^{9} + \left(2 a^{2} + 6 a + 26\right)\cdot 29^{10} + \left(10 a^{2} + 2 a + 1\right)\cdot 29^{11} + \left(6 a^{2} + 25 a + 14\right)\cdot 29^{12} + \left(21 a^{2} + 19 a + 28\right)\cdot 29^{13} + \left(20 a^{2} + 8 a + 2\right)\cdot 29^{14} + \left(23 a^{2} + 6 a + 3\right)\cdot 29^{15} + \left(a^{2} + 17\right)\cdot 29^{16} + \left(9 a^{2} + 27 a + 26\right)\cdot 29^{17} + \left(12 a^{2} + 19 a + 23\right)\cdot 29^{18} + \left(17 a^{2} + 6 a + 10\right)\cdot 29^{19} + \left(27 a^{2} + 5 a + 26\right)\cdot 29^{20} + \left(2 a^{2} + 10 a + 26\right)\cdot 29^{21} + \left(28 a^{2} + 23 a + 1\right)\cdot 29^{22} + \left(11 a^{2} + 13 a\right)\cdot 29^{23} +O\left(29^{ 24 }\right)$
$r_{ 5 }$ $=$ $ 13 a^{2} + 22 a + 4 + \left(23 a^{2} + 24 a + 6\right)\cdot 29 + \left(22 a^{2} + 16 a + 20\right)\cdot 29^{2} + \left(11 a^{2} + 14 a + 8\right)\cdot 29^{3} + \left(18 a^{2} + 6 a + 7\right)\cdot 29^{4} + \left(5 a^{2} + 6 a + 23\right)\cdot 29^{5} + \left(24 a^{2} + 5 a + 10\right)\cdot 29^{6} + \left(17 a^{2} + 15 a + 9\right)\cdot 29^{7} + \left(14 a^{2} + 7 a + 9\right)\cdot 29^{8} + \left(2 a^{2} + 7 a + 8\right)\cdot 29^{9} + \left(22 a^{2} + 21 a + 22\right)\cdot 29^{10} + \left(19 a^{2} + 19 a + 23\right)\cdot 29^{11} + \left(10 a^{2} + 23 a + 22\right)\cdot 29^{12} + \left(a^{2} + 28 a + 26\right)\cdot 29^{13} + \left(28 a^{2} + 24 a + 14\right)\cdot 29^{14} + \left(26 a^{2} + 2 a + 8\right)\cdot 29^{15} + \left(26 a^{2} + 7 a + 26\right)\cdot 29^{16} + \left(9 a^{2} + 16 a + 15\right)\cdot 29^{17} + \left(13 a^{2} + 20 a + 16\right)\cdot 29^{18} + \left(20 a^{2} + 9 a + 25\right)\cdot 29^{19} + \left(21 a^{2} + 14 a + 20\right)\cdot 29^{20} + \left(26 a^{2} + 14 a + 7\right)\cdot 29^{21} + \left(15 a^{2} + 4 a + 5\right)\cdot 29^{22} + \left(16 a^{2} + 22 a + 13\right)\cdot 29^{23} +O\left(29^{ 24 }\right)$
$r_{ 6 }$ $=$ $ 24 a^{2} + 15 a + 11 + \left(3 a^{2} + 4 a + 2\right)\cdot 29 + \left(2 a^{2} + 18 a + 17\right)\cdot 29^{2} + \left(25 a^{2} + 17 a + 22\right)\cdot 29^{3} + \left(16 a^{2} + a + 16\right)\cdot 29^{4} + \left(7 a^{2} + 2 a + 12\right)\cdot 29^{5} + \left(23 a^{2} + 13 a + 20\right)\cdot 29^{6} + \left(16 a^{2} + 8 a + 12\right)\cdot 29^{7} + \left(7 a^{2} + 2 a + 23\right)\cdot 29^{8} + \left(23 a + 18\right)\cdot 29^{9} + \left(22 a^{2} + 28 a + 23\right)\cdot 29^{10} + \left(14 a^{2} + 22 a + 17\right)\cdot 29^{11} + \left(16 a^{2} + 8 a + 27\right)\cdot 29^{12} + \left(17 a^{2} + 2 a + 13\right)\cdot 29^{13} + \left(21 a^{2} + 13 a + 23\right)\cdot 29^{14} + \left(10 a^{2} + 27 a + 14\right)\cdot 29^{15} + \left(6 a^{2} + 13 a + 13\right)\cdot 29^{16} + \left(20 a^{2} + 12\right)\cdot 29^{17} + \left(9 a^{2} + 28 a + 20\right)\cdot 29^{18} + \left(8 a^{2} + 9 a + 27\right)\cdot 29^{19} + \left(8 a^{2} + 19 a + 19\right)\cdot 29^{20} + \left(21 a^{2} + 15 a + 12\right)\cdot 29^{21} + \left(27 a^{2} + 10 a + 1\right)\cdot 29^{22} + \left(13 a^{2} + 18 a + 22\right)\cdot 29^{23} +O\left(29^{ 24 }\right)$
$r_{ 7 }$ $=$ $ 18 + 9\cdot 29 + 6\cdot 29^{2} + 20\cdot 29^{3} + 8\cdot 29^{4} + 12\cdot 29^{5} + 5\cdot 29^{6} + 14\cdot 29^{7} + 8\cdot 29^{8} + 23\cdot 29^{9} + 25\cdot 29^{10} + 29^{11} + 26\cdot 29^{12} + 24\cdot 29^{13} + 9\cdot 29^{14} + 5\cdot 29^{15} + 12\cdot 29^{16} + 20\cdot 29^{17} + 28\cdot 29^{18} + 3\cdot 29^{19} + 25\cdot 29^{20} + 26\cdot 29^{21} + 22\cdot 29^{22} +O\left(29^{ 24 }\right)$
$r_{ 8 }$ $=$ $ 24 a^{2} + 28 a + 11 + \left(22 a^{2} + 28 a + 8\right)\cdot 29 + \left(4 a^{2} + 11 a + 1\right)\cdot 29^{2} + \left(2 a^{2} + 21 a + 21\right)\cdot 29^{3} + \left(26 a^{2} + 10 a + 9\right)\cdot 29^{4} + \left(18 a^{2} + 28 a + 8\right)\cdot 29^{5} + \left(4 a^{2} + 7 a + 5\right)\cdot 29^{6} + \left(a^{2} + 2 a + 11\right)\cdot 29^{7} + \left(a^{2} + 4 a + 24\right)\cdot 29^{8} + \left(23 a^{2} + 24 a\right)\cdot 29^{9} + \left(4 a^{2} + 22 a + 20\right)\cdot 29^{10} + \left(4 a^{2} + 3 a + 3\right)\cdot 29^{11} + \left(6 a^{2} + 24 a + 4\right)\cdot 29^{12} + \left(19 a^{2} + 6 a + 16\right)\cdot 29^{13} + \left(15 a^{2} + 7 a + 15\right)\cdot 29^{14} + \left(23 a^{2} + 24 a + 12\right)\cdot 29^{15} + \left(20 a^{2} + 14 a + 13\right)\cdot 29^{16} + \left(28 a^{2} + a + 4\right)\cdot 29^{17} + \left(6 a^{2} + 10 a + 7\right)\cdot 29^{18} + \left(3 a^{2} + 12 a + 11\right)\cdot 29^{19} + \left(22 a^{2} + 4 a + 9\right)\cdot 29^{20} + \left(4 a^{2} + 3 a\right)\cdot 29^{21} + \left(2 a^{2} + 24 a + 6\right)\cdot 29^{22} + \left(3 a^{2} + 25 a + 17\right)\cdot 29^{23} +O\left(29^{ 24 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6,8)(3,5,7)$
$(1,6)(4,8)$
$(1,4)(2,3)(5,7)(6,8)$
$(1,6)(2,5)(3,7)(4,8)$
$(1,7)(2,4)(3,6)(5,8)$
$(1,8)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$6$
$3$$2$$(1,6)(2,5)(3,7)(4,8)$$-2$
$4$$2$$(1,7)(2,4)(3,6)(5,8)$$0$
$6$$2$$(1,4)(2,3)(5,7)(6,8)$$-2$
$6$$2$$(1,6)(4,8)$$2$
$16$$3$$(1,8,4)(3,5,7)$$0$
$16$$3$$(1,4,8)(3,7,5)$$0$
$12$$4$$(1,7,6,3)(2,8,5,4)$$0$
$16$$6$$(1,5)(2,4,7,6,3,8)$$0$
$16$$6$$(1,5)(2,8,3,6,7,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.