Properties

Label 6.3e5_359e4.20t35.2c1
Dimension 6
Group $\PGL(2,5)$
Conductor $ 3^{5} \cdot 359^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$\PGL(2,5)$
Conductor:$4036305855123= 3^{5} \cdot 359^{4} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 4 x^{4} - 3 x^{2} + 3 x + 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T35
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 10 a + 1 + \left(19 a + 13\right)\cdot 31 + \left(17 a + 14\right)\cdot 31^{2} + \left(29 a + 7\right)\cdot 31^{3} + \left(20 a + 5\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 4 + 22\cdot 31 + 25\cdot 31^{2} + 18\cdot 31^{3} + 28\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 21 a + 21 + \left(11 a + 10\right)\cdot 31 + \left(13 a + 30\right)\cdot 31^{2} + \left(a + 17\right)\cdot 31^{3} + \left(10 a + 17\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 19 a + 20 + \left(14 a + 12\right)\cdot 31 + \left(17 a + 26\right)\cdot 31^{2} + \left(9 a + 9\right)\cdot 31^{3} + \left(14 a + 13\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 23 + 11\cdot 31 + 11\cdot 31^{2} + 27\cdot 31^{3} + 26\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 12 a + 27 + \left(16 a + 22\right)\cdot 31 + \left(13 a + 15\right)\cdot 31^{2} + \left(21 a + 11\right)\cdot 31^{3} + \left(16 a + 1\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6)(2,5)(3,4)$
$(1,4,6,5,2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$6$
$10$$2$$(1,6)(2,5)(3,4)$$0$
$15$$2$$(2,3)(5,6)$$-2$
$20$$3$$(1,6,2)(3,4,5)$$0$
$30$$4$$(2,6,3,5)$$0$
$24$$5$$(1,5,3,6,4)$$1$
$20$$6$$(1,4,6,5,2,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.