Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 10 a + 1 + \left(19 a + 13\right)\cdot 31 + \left(17 a + 14\right)\cdot 31^{2} + \left(29 a + 7\right)\cdot 31^{3} + \left(20 a + 5\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 4 + 22\cdot 31 + 25\cdot 31^{2} + 18\cdot 31^{3} + 28\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 21 a + 21 + \left(11 a + 10\right)\cdot 31 + \left(13 a + 30\right)\cdot 31^{2} + \left(a + 17\right)\cdot 31^{3} + \left(10 a + 17\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 19 a + 20 + \left(14 a + 12\right)\cdot 31 + \left(17 a + 26\right)\cdot 31^{2} + \left(9 a + 9\right)\cdot 31^{3} + \left(14 a + 13\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 23 + 11\cdot 31 + 11\cdot 31^{2} + 27\cdot 31^{3} + 26\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 12 a + 27 + \left(16 a + 22\right)\cdot 31 + \left(13 a + 15\right)\cdot 31^{2} + \left(21 a + 11\right)\cdot 31^{3} + \left(16 a + 1\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,6)(2,5)(3,4)$ |
| $(1,4,6,5,2,3)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$6$ |
| $10$ |
$2$ |
$(1,6)(2,5)(3,4)$ |
$0$ |
| $15$ |
$2$ |
$(2,3)(5,6)$ |
$-2$ |
| $20$ |
$3$ |
$(1,6,2)(3,4,5)$ |
$0$ |
| $30$ |
$4$ |
$(2,6,3,5)$ |
$0$ |
| $24$ |
$5$ |
$(1,5,3,6,4)$ |
$1$ |
| $20$ |
$6$ |
$(1,4,6,5,2,3)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.