Properties

Label 6.311...057.14t46.a.a
Dimension $6$
Group $S_7$
Conductor $3.113\times 10^{38}$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $6$
Group: $S_7$
Conductor: \(311\!\cdots\!057\)\(\medspace = 3^{5} \cdot 16653619^{5} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 7.7.49960857.1
Galois orbit size: $1$
Smallest permutation container: 14T46
Parity: even
Determinant: 1.49960857.2t1.a.a
Projective image: $S_7$
Projective stem field: Galois closure of 7.7.49960857.1

Defining polynomial

$f(x)$$=$ \( x^{7} - 7x^{5} + 13x^{3} - 5x - 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 73 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 73 }$: \( x^{2} + 70x + 5 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 40 a + 64 + \left(20 a + 43\right)\cdot 73 + \left(66 a + 49\right)\cdot 73^{2} + \left(62 a + 31\right)\cdot 73^{3} + \left(20 a + 32\right)\cdot 73^{4} +O(73^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 51 a + 26 + \left(2 a + 56\right)\cdot 73 + \left(53 a + 37\right)\cdot 73^{2} + \left(52 a + 21\right)\cdot 73^{3} + \left(48 a + 57\right)\cdot 73^{4} +O(73^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 47 a + 1 + \left(6 a + 58\right)\cdot 73 + \left(30 a + 39\right)\cdot 73^{2} + \left(22 a + 40\right)\cdot 73^{3} + \left(49 a + 21\right)\cdot 73^{4} +O(73^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 22 a + 33 + \left(70 a + 13\right)\cdot 73 + \left(19 a + 48\right)\cdot 73^{2} + \left(20 a + 53\right)\cdot 73^{3} + \left(24 a + 4\right)\cdot 73^{4} +O(73^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 33 a + 38 + \left(52 a + 65\right)\cdot 73 + \left(6 a + 8\right)\cdot 73^{2} + \left(10 a + 8\right)\cdot 73^{3} + \left(52 a + 32\right)\cdot 73^{4} +O(73^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 61 + 23\cdot 73 + 57\cdot 73^{2} + 58\cdot 73^{3} + 69\cdot 73^{4} +O(73^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 26 a + 69 + \left(66 a + 30\right)\cdot 73 + \left(42 a + 50\right)\cdot 73^{2} + \left(50 a + 4\right)\cdot 73^{3} + \left(23 a + 1\right)\cdot 73^{4} +O(73^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character valueComplex conjugation
$1$$1$$()$$6$
$21$$2$$(1,2)$$-4$
$105$$2$$(1,2)(3,4)(5,6)$$0$
$105$$2$$(1,2)(3,4)$$2$
$70$$3$$(1,2,3)$$3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$-2$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$1$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$-1$
$504$$10$$(1,2,3,4,5)(6,7)$$1$
$420$$12$$(1,2,3,4)(5,6,7)$$1$